Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK
    Crit Rev Food Sci Nutr, 2020;60(7):1195-1206.
    PMID: 30714390 DOI: 10.1080/10408398.2018.1564234
    The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
  2. Ahmad Tarmizi AH, Kuntom A
    PMID: 33397128 DOI: 10.1080/10408398.2020.1865264
    3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) are processed-developed contaminants presence in vegetable oils after undergo refining process under excessive heat. Refined oils are extensively used in various frying applications, nevertheless, the reservation against their quality and safety aspects are of major concern to consumers and food industry. Realizing the importance to address these issues, this article deliberates an overview of published studies on the manifestation of 3-MCPDE and GE when vegetable oils undergo for frying process. With the modest number of published frying research associated to 3-MCPDE and GE, we confined our review from the perspectives of frying conditions, product properties, antioxidants and additives, pre-frying treatments and frying oil management. Simplicity of the frying process is often denied by the complexity of reactions occurred between oil and food which led to the development of unwanted contaminants. The behavior of 3-MCPDE and GE is closely related to physico-chemical characteristics of oils during frying. As such, relationships between 3-MCPDE and/or GE with frying quality indices - i.e. acidity in term of free fatty acid or acid value); secondary oxidation in term of p-anisidine value, total polar compounds and its fractions, and refractive index - were also discussed when oils were subjected under intermittent and continuous frying conditions.
  3. Alhabeeb H, Kord-Varkaneh H, Tan SC, Găman MA, Otayf BY, Qadri AA, et al.
    PMID: 33356450 DOI: 10.1080/10408398.2020.1863905
    BACKGROUND: Inconsistencies exist with regard to the influence of omega-3 supplementation on 25-hydroxyvitamin D (25(OH)D) levels, which could be attributed to many factors, such as the duration and dose of omega-3 supplementation, and individuals' baseline 25(OH)D levels. Therefore, to address the inconsistencies, we conducted a systematic review and dose-response meta-analysis to accurately determine the effect of omega-3 supplementation on 25(OH)D levels in humans.

    METHODS: We performed a comprehensive literature search in Web of Science, PubMed/Medline, Scopus, and Embase databases from inception up to January 2020. We included only randomized controlled trials (RCTs). We used weighted mean difference (WMD) with 95% confidence interval (CI) to assess the influence of omega-3 supplementation on serum 25(OH)D levels using the random-effects model.

    RESULTS: Our pooled results of 10 RCTs demonstrated an overall significant increase in 25(OH)D levels following omega-3 intake (WMD = 3.77 ng/ml, 95% CI: 1.29, 6.25). In addition, 25(OH)D levels were significantly increased when the intervention duration lasted >8 weeks and when the baseline serum 25(OH)D level was ˂20 ng/ml. Moreover, omega-3 intake ≤1000 mg/day resulted in higher 25(OH)D levels compared to omega-3 intake >1000 mg/day.

    CONCLUSION: In conclusion, omega-3 supplementation increased 25(OH)D concentrations, particularly with dosages ≤1000 mg/day and intervention durations >8 weeks.

  4. Ali A, Yeoh WK, Forney C, Siddiqui MW
    Crit Rev Food Sci Nutr, 2018;58(15):2632-2649.
    PMID: 29072844 DOI: 10.1080/10408398.2017.1339180
    Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.
  5. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al.
    Crit Rev Food Sci Nutr, 2018 Jun 13;58(9):1495-1511.
    PMID: 28033035 DOI: 10.1080/10408398.2016.1264361
    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
  6. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
  7. Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, et al.
    PMID: 33977840 DOI: 10.1080/10408398.2021.1915744
    Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
  8. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    PMID: 33455424 DOI: 10.1080/10408398.2021.1871589
    The application of protein-protein interaction (PPI) has been widely used in various industries, such as food, nutraceutical, and pharmaceutical. A deeper understanding of PPI is needed, and the molecular forces governing proteins and their interaction must be explained. The design of new structures with improved functional properties, e.g., solubility, emulsion, and gelation, has been fueled by the development of structural and colloidal building blocks. In this review, the molecular forces of protein structures are discussed, followed by the relationship between molecular force and structure, ways of a bind of proteins together in solution or at the interface, and functional properties. A more detailed look is thus taken at the relationship between the various influencing factors on molecular forces involved in PPI. These factors include protein properties, such as types, concentration, and mixing ratio, and solvent conditions, such as ionic strength and pH. This review also summarizes methods tha1t are capable of identifying molecular forces in protein and PPI, as well as characterizing protein structure.
  9. Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH
    Crit Rev Food Sci Nutr, 2023;63(25):7677-7691.
    PMID: 35266840 DOI: 10.1080/10408398.2022.2049200
    Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
  10. Bakrim S, Aboulaghras S, Aanniz T, Benali T, El Omari N, El-Shazly M, et al.
    PMID: 36908235 DOI: 10.1080/10408398.2023.2187622
    The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
  11. Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M
    Crit Rev Food Sci Nutr, 2016 Oct 02;56(13):2209-22.
    PMID: 25674822 DOI: 10.1080/10408398.2013.764841
    Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons.
  12. Bo S, Chang SK, Chen Y, Sheng Z, Jiang Y, Yang B
    Crit Rev Food Sci Nutr, 2024;64(9):2490-2512.
    PMID: 36123801 DOI: 10.1080/10408398.2022.2124396
    Rare flavonoids, a special subclass of naturally occurring flavonoids with diverse structures including pterocarpans, aurones, neoflavonoids, homoisoflavones, diphenylpropanes, rotenoids and 2-phenylethyl-chromones. They are mainly found in legumes with numerous health benefits. Rare flavonoids are regarded as minor flavonoids due to their very limited abundance in nature. This review gives an overview of the natural occurrences of rare flavonoids from previous literatures. Recent findings on the biosynthesis of rare flavonoids have been updated by describing their structural characteristics and classifications. Recent findings on the health benefits of rare flavonoids have also been compiled and discussed. Natural rare flavonoids with various characteristics from different subclasses from plant-based food sources are stated. They show a wide range of health benefits, including antibacterial, anticancer, anti-osteoporosis and antiviral activities. Studies reviewed suggest that rare flavonoids possessing different skeletons demonstrate different characteristic bioactivities by discussing their mechanism of actions and structure-activity relationships. Besides, recent advances on the biosynthesis of rare flavonoids, such as pterocarpans, rotenoids and aurones are well-known, while the biosynthesis of other subclasses remain unknown. The perspectives and further applications of rare flavonoids using metabolic engineering strategies also be expected.
  13. Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR
    Crit Rev Food Sci Nutr, 2022;62(5):1317-1335.
    PMID: 33146031 DOI: 10.1080/10408398.2020.1841728
    Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus are the most significant aquatic pathogens of the genera Vibrio, account for most Vibrio-associated outbreaks worldwide. Rapid identification of these pathogens is of great importance for disease surveillance, outbreak investigations and food safety maintenance. Traditional culture dependent methods are time-consuming and labor-intensive whereas culture-independent polymerase chain reaction (PCR) based assays are reliable, consistent, rapid and reproducible. This review covers the recent development and applications of PCR based techniques, which have accelerated advances in the analysis of nucleic acids to identify three major pathogenic vibrios. Emphasis has been given to analytical approaches as well as advantages and limits of the available methods. Overall, this review article possesses the substantial merit to be used as a reference guide for the researchers to develop improved PCR based techniques for the differential detection and quantification of Vibrio species.
  14. Chai TT, Tan YN, Ee KY, Xiao J, Wong FC
    Crit Rev Food Sci Nutr, 2019;59(sup1):S162-S177.
    PMID: 30663883 DOI: 10.1080/10408398.2018.1561418
    The emergence of bacterial resistance against conventional antibiotics and the growing interest in developing alternative, natural antibacterial agents have prompted the search for plant-derived antibacterial peptides in recent decades. Different classes of endogenous antibacterial peptides have been identified from various plant species. Moreover, protein hydrolysates and hydrolysate-derived peptides with potent antibacterial effects have also been identified from numerous plant sources. Antibacterial peptides are often cationic and amphipathic, consisting of fewer than 100 amino acids. They are able to disrupt bacterial membrane integrity via pore formation and/or compromise bacterial metabolic processes. In this review, we summarize current knowledge on the characteristics and modes of action of antibacterial peptides, as well as salient points concerning the production of antibacterial protein hydrolysates from plant proteins. Examples of plant-derived antibacterial hydrolysates and peptides will be highlighted, with particular attention to less explored seeds, fermented plant foods and agricultural by-products. Promising future research directions with regards to the application of plant-derived antibacterial hydrolysates and peptides in food preservation, farm animal disease management, and nutraceutical/functional food development will be proposed.
  15. Chan Y, Raju Allam VSR, Paudel KR, Singh SK, Gulati M, Dhanasekaran M, et al.
    Crit Rev Food Sci Nutr, 2023;63(19):3302-3332.
    PMID: 34613853 DOI: 10.1080/10408398.2021.1986467
    Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.
  16. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
  17. Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, et al.
    PMID: 36803106 DOI: 10.1080/10408398.2023.2179969
    Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
  18. Cheok CY, Mohd Adzahan N, Abdul Rahman R, Zainal Abedin NH, Hussain N, Sulaiman R, et al.
    Crit Rev Food Sci Nutr, 2018 Feb 11;58(3):335-361.
    PMID: 27246698 DOI: 10.1080/10408398.2016.1176009
    Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
  19. Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, et al.
    PMID: 37318213 DOI: 10.1080/10408398.2023.2220803
    Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
  20. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links