Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Wong TW
    Curr Drug Deliv, 2008 Apr;5(2):77-84.
    PMID: 18393808
    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.
  2. Pabreja K, Dua K, Padi SS
    Curr Drug Deliv, 2010 Oct;7(4):324-8.
    PMID: 20695843
    The systemic use of non-steroidal anti-inflammatory drugs (NSAIDs) which act by inhibiting cyclooxygenase (COX) is severely hampered by gastric and peptic ulcers. The topical delivery of NSAIDs has the advantages of avoiding gastric and peptic ulcers and delivering the drug to the inflammation site. Importance of aceclofenac as a new generational NSAID has inspired the development of topical dosage forms. This mode of administration may help to avoid typical side effects of NSAIDs associated with oral and systemic administration such as gastric irritation, particularly diarrhoea, nausea, abdominal pain and flatulence. The aim of this study was to formulate topical gel containing 1% of aceclofenac in carbopol and PEG base and to evaluate it for analgesic and antiinflammatory activity using carrageenan-induced thermal hyperalgesia and paw oedema in rats. Carrageenan administration into the hind paw produced a significant inflammation associated with hyperalgesia as shown by decreased rat paw withdrawal latency in response to a thermal stimulus (47+/-0.5 degrees C) 4 h after carrageenan injection. Topical application of AF1 significantly attenuated the development of hypersensitivity to thermal stimulus as compared to control (P<0.05) and other formulation treated groups (P<0.05). All the AF semisolid formulations, when applied topically 2 h before carrageenan administration, inhibited paw edema in a timedependent manner with maximum percent edema inhibition of 80.33+/-2.52 achieved with AF1 after 5 h of carrageenan administration However, topical application of AF2 markedly prevented the development of edema as compared to other formulation (AF2 and AF3) treated groups (P<0.05). Among all the semisolid formulations, Carbopol gel base was found to be most suitable dermatological base for aceclofenac.
  3. Gorajana A, Ying CC, Shuang Y, Fong P, Tan Z, Gupta J, et al.
    Curr Drug Deliv, 2013 Jun;10(3):309-16.
    PMID: 23360246
    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
  4. Kumar PV, Lokesh BV
    Curr Drug Deliv, 2014;11(5):613-20.
    PMID: 25268676
    The present study aims to develop and explore the use of PEGylated rapamycin (RP-MPEG) micelles for the treatment of gastric cancer. RP-MPEG was synthesized and characterized by using IR, H(1) NMR and C(13) NMR. RP-MPEG was prepared in the form of micelles and characterized by using field emission scanning electron microscopy, dynamic light scattering, zeta sizer, chromatographic analyses and photostability studies. The cytotoxicity studies of RP-MPEG micelles were conducted on specific CRL 1739 human gastric adenocarcinoma and CRL 1658 NIH-3T3 mouse embryonic fibroblast cell lines. RP-MPEG micelles showed the particle size distribution of 125±0.26 nm with narrow size distribution (polydispersity index 0.127±0.01). The surface charge of RP-MPEG micelles was found to be -12.3 mV showing enhanced anticancer activity against the CRL 1739 human gastric adenocarcinoma cell lines with an IC50 value of 1 mcg/ml.
  5. Muthoosamy K, Bai RG, Manickam S
    Curr Drug Deliv, 2014;11(6):701-18.
    PMID: 24909150
    Motivated by the success and exhaustive research on carbon nanotubes (CNTs) based drug delivery, graphene, a two-dimensional; honey-comb crystal lattice has emerged as the rising star in recent years. Graphene is a flat monolayer of carbon atoms that holds many promising properties such as unparalleled thermal conductivity, remarkable electronic properties, and most intriguingly higher planar surface and superlative mechanical strength, which are attractive in biotechnological applications. Delivery of anti-cancer drugs using graphene and its derivatives has sparked major interest in this emerging field. The anti-cancer therapies often pose a limitation of insolubility, administration problems and cell penetration ability. In addition, systemic toxicity caused by lack of selective targeting towards cancer cells and inefficient distribution limits its clinical applications. Graphene nanocomposite is a promising tool to address these drawbacks. This review will focus on various synthesis and functionalization of graphene and graphene oxide for providing better solubility and targeted drug delivery at cancer cells. A more advanced and 'smart' graphene hybrid nanostructures that have several functionalities such as stimulus-response mediated delivery, imaging at release sites as well as transfection into cancer cells are also presented. A brief description on the challenges and perspectives for future research in this field is also discussed.
  6. Tiash S, Othman I, Rosli R, Chowdhury EH
    Curr Drug Deliv, 2014;11(2):214-22.
    PMID: 24328684
    Most of the classical drugs used today to destroy cancer cells lead to the development of acquired resistance in those cells by limiting cellular entry of the drugs or exporting them out by efflux pumps. As a result, higher doses of drugs are usually required to kill the cancer cells affecting normal cells and causing numerous side effects. Accumulation of the therapeutic level of drugs inside the cancer cells is thus required for an adequate period of time to get drugs' complete therapeutic efficacy minimizing the side effects on normal cells. In order to improve the efficacy of chemotherapeutic drugs, nanoparticles of carbonate apatite and its strontium (Sr(2+))-substituted derivative were used in this study to make complexes with three classical anticancer drugs, methotrexate, cyclophosphamide and 5-flurouracil. The binding affinities of these drugs to apatite were evaluated by absorbance and HPLC analysis and the therapeutic efficacy of drug-apatite complexes was determined by cell viability assay. Carbonate apatite demonstrated significant binding affinity towards methotrexate and cyclophosphamide leading to more cellular toxicity than free drugs in MCF-7 and 4T1 breast cancer cells. Moreover, Sr(2+) substitution in carbonate apatite with resulting tiny particles less than 100 nm in diameter further promoted binding of methotrexate to the nanocarriers indicating that Sr(2+)-substituted apatite nanoparticles have the high potential for loading substantial amount of anti-cancer drugs with eventual more therapeutic effectiveness.
  7. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
  8. Nair RS, Nair S
    Curr Drug Deliv, 2015;12(5):517-23.
    PMID: 25675336
    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.
  9. Mozar FS, Chowdhury EH
    Curr Drug Deliv, 2015;12(3):333-41.
    PMID: 25600981
    Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.
  10. Ahmad A, Othman I, Md Zain AZ, Chowdhury EH
    Curr Drug Deliv, 2015;12(2):210-22.
    PMID: 22452407
    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.
  11. Tan SL, Stanslas J, Basri M, Abedi Karjiban RA, Kirby BP, Sani D, et al.
    Curr Drug Deliv, 2015;12(6):795-804.
    PMID: 26324229
    Carbamzepine (CBZ) was encapsulated in a parenteral oil-in-water nanoemulsion, in an attempt to improve its bioavailability. The particle size, polydispersity index and zeta potential were measured using dynamic light scattering. Other parameters such as pH, osmolality, viscosity, drug loading efficiency and entrapment efficiency were also recorded. Transmission electron microscopy revealed that emulsion droplets were almost spherical in shape and in the nano-range. The in vitro release profile was best characterized by Higuchi's equation. The parenteral nanoemulsion of CBZ showed significantly higher AUC0→5, AUC0→∞, AUMC0→5, AUMC0→∞, Cmax and lower clearance than that of CBZ solution in plasma. Additionally, parenteral nanoemulsion of CBZ showed significantly higher AUC0→∞, AUMC0→∞ and Cmaxthan that of CBZ solution in brain. The parenteral nanoemulsion of CBZ could therefore use as a carrier, worth exploring further for brain targeting.
  12. Meka VS, Murthy Kolapalli VR
    Curr Drug Deliv, 2016;13(6):971-81.
    PMID: 26452534
    A central composite design was applied to design a novel gastric floating drug delivery system comprising propranolol HCl in Terminalia catappa gum and to evaluate the buoyancy, in vitro drug release behavior, and pharmacokinetic parameters. All formulations exhibited good buoyancy properties in vitro reflected by floating lag time of 1-110 sec, total floating time of 9-16 h and prolonged release behaviour (upto 12 h). Statistically optimised formulation (PBGRso) was orally administered to human volunteers under both fasted and fed conditions to evaluate gastric floating behavior under different food conditions by X-ray evaluation. In vivo studies of optimised formulations revealed that the gastric residence time of floating tablets was enhanced in the fed but not in the fasted state. Pharmacokinetic studies of the optimised Terminalia catappa formulation and a commercial product (Ciplar LA 80) carried out on healthy human volunteers showed a significant improvement in the bioavailability (132%) of propranolol HCl released from from the experimental Terminalia catappa formulations compared with Ciplar LA 80.
  13. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P
    Curr Drug Deliv, 2017;14(8):1053-1059.
    PMID: 27572089 DOI: 10.2174/1567201813666160829100453
    BACKGROUND: Curcumin is a yellow polyphenolic chemopreventive agent isolated from the rhizomes of Curcuma longa. It is approved as Generally Regarded as Safe by US FDA. Nonetheless, its clinical success is limited due to its poor aqueous solubility, fast metabolism and short biological half-life attributes.

    OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.

    METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.

    RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.

    CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.

  14. Khodari SNK, Noordin MI, Chan L, Chik Z
    Curr Drug Deliv, 2017;14(5):690-695.
    PMID: 27480118 DOI: 10.2174/1567201813666160801113302
    BACKGROUND: Topical local anaesthetic cream was reported to be useful for pain relief for cutaneous procedures such as minor surgery and venipuncture.

    OBJECTIVE: The aim of this study was to evaluate the effectiveness of new formulation of lidocaine topical anaesthetic using palm oil base, HAMIN® and to determine how fast this new formulation produces adequate numbness compared to the currently used EMLA cream, in the University of Malaya Medical Centre (UMMC) set-up.

    METHOD: The skin permeation test was conducted by using Franz type diffusion cell and pain assessment was carried out in healthy subject by using Verbal Rating Score (VRS) and Visual Analogue Score (VAS) evaluation.

    RESULT: Result of permeation test demonstrated that the cumulative amount of lidocaine released from HAMIN® cream was increased with time and slightly higher than EMLA cream. The clinical study showed that HAMIN® single lidocaine cream can produces numbness through venepuncture procedure and comparable with EMLA cream which is a combination therapy for local anaesthetic (lidocaine and prilocaine).

    CONCLUSION: It can be concluded that HAMIN® Lidocaine cream is suitable for cream preparation especially for topical application and it can be regarded as an achievement in palm oil and medical industries.

  15. Hussain Z, Katas H, Yan SL, Jamaludin D
    Curr Drug Deliv, 2017;14(7):1016-1027.
    PMID: 28240178 DOI: 10.2174/1567201814666170224142446
    BACKGROUND: Despite having excellent anticancer efficacy and ability to knockdown gene expression, the therapeutic feasibility of Dicer-substrate small interfering RNA (DsiRNA) is limited due to its poor cellular uptake, chemical instability and rapid degradation in biological environments.

    OBJECTIVE: The present study was aimed to circumvent the pharmaceutical issues related to DsiRNA delivery to colon for the treatment of colorectal cancer.

    METHOD: In this study, we have prepared water-soluble chitosan (WSC)-DsiRNA complex nanoparticles (NPs) by a simple complexation method and subsequently coated with pectin to protect DsiRNA from gastric milieu.

    RESULTS: The mean particle size and zeta potential of the prepared WSC-DsiRNA complexes were varied from 145 ± 4 nm to 867 ± 81 nm and +38 ± 4 to -6.2 ± 2.7 mV respectively, when the concentrations of WSC (0.1%, 0.2% and 0.3% w/v) and pectin (0.1%, 0.2% and 0.25% w/v) were varied. The electron microscopic analysis revealed that morphology of WSC-DsiRNA complexes was varied from smooth spherical to irregular spherical. Cytotoxicity analysis demonstrated that viability of colorectal adenocarcinoma cell was decreased when the dose of WSC-DsiRNA was increased over the incubation from 24 to 48 h. A significantly low cumulative release of DsiRNA in simulated gastric (<15%) and intestinal fluids (<30%) and a marked increase in its release (>90%) in simulated colonic fluid (SCF) evidenced the feasibility and suitability of WSC-DsiRNA complexes for the colonic delivery.

    CONCLUSION: These findings clearly indicated promising potential of WSC-DsiRNA complexes as a carrier to delivery DsiRNA to colon for the treatment of colorectal cancer.

  16. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

  17. Haque ST, Chowdhury EH
    Curr Drug Deliv, 2018;15(4):485-496.
    PMID: 29165073 DOI: 10.2174/1567201814666171120114034
    BACKGROUND: Delivery of conventional small molecule drugs and currently evolving nucleic acid-based therapeutics, such as small interfering RNAs (siRNAs) and genes, and contrast agents for high resolution imaging, to the target site of action is highly demanding to increase the therapeutic and imaging efficacy while minimizing the off-target effects of the delivered molecules, as well as develop novel therapeutic and imaging approaches.

    METHODS: We have undertaken a structured search for peer-reviewed research and review articles predominantly indexed in PubMed focusing on the organic-inorganic hybrid nanoparticles with evidence of their potent roles in intracellular delivery of therapeutic and imaging agents in different animal models.

    RESULTS: Organic-inorganic hybrid nanoparticles offer a number of advantages by combining the unique properties of the organic and inorganic counterparts, thus improving the pharmacokinetic behavior and targetability of drugs and contrast agents, and conferring the exclusive optical and magnetic properties for both therapeutic and imaging purposes. Different polymers, lipids, dendrimers, peptides, cell membranes, and small organic molecules are attached via covalent or non-covalent interactions with diverse inorganic nanoparticles of gold, mesoporous silica, magnetic iron oxide, carbon nanotubes and quantum dots for efficient drug delivery and imaging purposes.

    CONCLUSION: We have thus highlighted here the progress made so far in utilizing different organicinorganic hybrid nanoparticles for in vivo delivery of anti-cancer drugs, siRNA, genes and imaging agents.

  18. Thent ZC, Das S, Zaidun NH
    Curr Drug Deliv, 2018;15(4):453-460.
    PMID: 28545355 DOI: 10.2174/1567201814666170525122224
    BACKGROUND: The incidence of diabetes mellitus has increased drastically over the past few decades. This oxidant-antioxidant imbalance resulting in complication of diabetes mellitus includes macro- and microvascular complications. Resistance to conventional treatment and patient compliance has paved the way to the usage of effective natural products and supplements. Momordica charantia (bitter gourd) is widely consumed in many parts of Malaysia as a vegetable. Momordica charantia (MC) is mainly used in the management of diabetes mellitus.

    OBJECTIVE: The present review discusses the literature concerning the antidiabetic and antioxidant properties of MC focusing on the complication of diabetes mellitus along with its mode of delivery. We found that among the whole part of MC, its fruit extract has been widely studied, therapeutically. The evidence based analysis of the beneficiary effects of MC on the different organs involved in diabetes complication is also highlighted. This review elucidated an essential understanding of MC based drug delivery system in both clinical and experimental studies and appraised the great potential of the protein based MC extract against diabetes mellitus.

    CONCLUSION: The review paper is believed to assist the researchers and medical personnel in treating diabetic associated complications.

  19. Singh G, Kesharwani P, Srivastava AK
    Curr Drug Deliv, 2018;15(3):312-320.
    PMID: 29165080 DOI: 10.2174/1567201814666171120125916
    BACKGROUND: Tuberculosis is an infection and caused by gentle growing bacteria. The Internet provides opportunities for people with tuberculosis (TB) to connect with one another to address these challenges.

    OBJECTIVE: The aim of this paper is to introduce readers to the platforms on which Tuberculosis participants interact, to discuss reasons for and risks associated with TB-related activity, and to review research related to the potential impact of individual participation on TB outcomes.

    METHODS: Research and online content related to Tuberculosis online activity is reviewed, however, the difficulty in accurate prescribing and adhering to these protocols and the emergence of M. tuberculosis strains resistant to multiple drugs and drug-drug interactions that interfere with optimal treatment of Tuberculosis and co-infected patients with the different disease has generated a pressing need for improved Tuberculosis therapies.

    RESULTS: Together with the ominous global burden of Tuberculosis, those shortcomings of current medication have contributed to a renewed interest in the development of improved drugs and protocols for the medication of Tuberculosis. This article features obstacles related with the enhanced utilization of existing drugs and difficulties related with the advancement of enhanced products, concentrating on perspectives characteristic in Tuberculosis drug clinical improvement. The participation includes peer support, advocacy, self-expression, seeking and sharing TB information, improving approaches to Tuberculosis data management, and humour.

    CONCLUSION: This article highlights hurdles related to the optimised use of existing drugs and challenges related to the development of improved products, focusing on aspects inherent in Tuberculosis drug clinical development. Concluding comments offer processes for more efficient development of Tuberculosis therapies and increase the quality of life.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links