Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Khalid A, Shakeel R, Justin S, Iqbal G, Shah SAA, Zahid S, et al.
    Curr Drug Targets, 2017;18(13):1545-1557.
    PMID: 28302036 DOI: 10.2174/1389450118666170315120627
    BACKGROUND: Stress is involved in memory impairment through multiple mechanisms, including activation of hypothalamic-pituitary axis, which in turn activates release of corticosterone in blood. Cholinergic system blockade by the muscarinic antagonist, scopolamine, also impairs memory.

    OBJECTIVE: This study aimed to investigate the effect of turmeric (20mg/kg) on learning and memory and cholinergic system in a mouse model of stress along with cholinergic blockade.

    METHODS: Restrained stress was induced and cholinergic receptors were blocked using scopolamine in mice. Animals were treated with turmeric (turmeric rhizome powder which was also subjected to NMR analyses) and learning and social behavior was examined. Effect of turmeric on cholinergic muscarinic receptors (mAChR; M1, M3 and M5) gene expression was assessed by RT-PCR in both pre-frontal cortex and hippocampus.

    RESULTS: Ar-turmerone, curcuminoids and α-linolenic acid were the lead compounds present in turmeric extract. Increased serum corticosterone levels were observed in stressed mice when compared to the control group, while turmeric treatment significantly reduced serum corticosterone level. Turmeric treatment caused an improved learning and memory in Morris water maze test in stressed animals. Social novelty preference was also restored in turmeric treated animals. Following turmeric treatment, M5 expression was improved in the cortex and M3 expression was improved in the hippocampus of stress + scopolamine + turmeric treated group.

    CONCLUSIONS: These findings highlight the therapeutic role of turmeric by increasing the expression of M3, M5 and improving learning and memory. Turmeric can be an effective candidate for the treatment of amnesia caused by the stress.

  2. Koon CS, Sidi H, Kumar J, Xi OW, Das S, Hatta MH, et al.
    Curr Drug Targets, 2018;19(12):1366-1377.
    PMID: 28215172 DOI: 10.2174/1389450118666170215164747
    Erectile function (EF) is a prerequisite for satisfactory sexual intercourse (SI) and central to male sexual functioning. Satisfactory SI eventually initiates orgasm - a biopsychophysiological state of euphoria - leading to a sense of bliss, enjoyment and positive mental well being. For a psychiatrist, treating ED is self-propelled to harmonize these pleasurable experiences alongside with encouragement of physical wellness and sensuality. Hence, the role of PDE-5i is pivotal in this context and constitutes a therapeutic challenge. PDE-5i work via the dopaminergic-oxytocin-nitric oxide pathway by increasing the availability of endothelial's guanosine monophosphate (GMP), immediately causing relaxation of the penile smooth muscle and an erection. The PDE-5i, like sildenafil, vardenafil and tadalafil, are effective in the treatment of ED with some benefits/ flexibilities and disadvantages compared to other treatment modalities. Prescribed PDE-5i exclusively improve EF, fostering male's self-confidence and self-esteem. Treatment failures are associated with factors such as absent (or insufficient) sexual stimulation, psychosexual conflicts and the co-existence of medical disorders. Managing ED requires dealing with underlying medical diseases, addressing other co-morbid sexual dysfunctions like premature ejaculation (PE), and educating the patient on healthy life-styles. Furthermore, by dealing with interpersonal dynamics within the couple and embracing adequate lifestyles (managing stress and revising one's sexual scripts), PDE-5i treatment benefits may be enhanced. In this review, we propose a holistic conceptual framework approach for psychiatric management of patients with ED.
  3. Asiff M, Sidi H, Masiran R, Kumar J, Das S, Hatta NH, et al.
    Curr Drug Targets, 2018;19(12):1391-1401.
    PMID: 28325146 DOI: 10.2174/1389450118666170321144931
    Hypersexuality refers to abnormally increased or extreme involvement in any sexual activity. It is clinically challenging, presents trans-diagnostically and there is extensive medical literature addressing the nosology, pathogenesis and neuropsychiatric aspects in this clinical syndrome. Classification includes deviant behaviours, diagnosable entities related to impulsivity, and obsessional phenomena. Some clinicians view an increase in sexual desire as 'normal' i.e. psychodynamic theorists consider it as egodefensive at times alleviating unconscious anxiety rooted in intrapsychic conflicts. We highlight hypersexuality as multi-dimensional involving an increase in sexual activity that is associated with distress and functional impairment. The aetiology of hypersexuality is multi-factorial with differential diagnoses that include major psychiatric disorders (e.g. bipolar disorder), adverse effects of treatments (e.g. levodopatreatment), substance-induced disorders (e.g. amphetamine substance use), neuropathological disorders (e.g. frontal lobe syndrome), among others. Numerous neurotransmitters are implicated in its pathogenesis, with dopamine and noradrenaline playing a crucial role in the neural reward pathways and emotionally- regulated limbic system neural circuits. The management of hypersexuality is determined by the principle of de causa effectu evanescent, if the causes are treated, the effect may disappear. We aim to review the role of pharmacological agents causing hypersexuality and centrally acting agents treating the associated underlying medical conditions. Bio-psycho-social determinants are pivotal in embracing the understanding and guiding management of this complex and multi-determined clinical syndrome.
  4. Radzi NFM, Ismail NAS, Alias E
    Curr Drug Targets, 2018;19(9):1095-1107.
    PMID: 29412105 DOI: 10.2174/1389450119666180207092539
    BACKGROUND: There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression.

    OBJECTIVE: This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone.

    RESULTS: Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers.

    CONCLUSION: Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.

  5. Kadir ZS, Sidi H, Kumar J, Das S, Midin M, Baharuddin N
    Curr Drug Targets, 2018;19(8):916-926.
    PMID: 28228081 DOI: 10.2174/1389450118666170222153908
    Vaginismus is an involuntary muscle contraction of the outer third of vaginal barrel causing sexual penetration almost impossible. It is generally classified under sexual pain disorder (SPD). In Diagnostic and Statistical Manual, 5th edition (DSM-5), it is classified under the new rubric of Genito-Pelvic Pain/Sexual Penetration Disorder. This fear-avoidance condition poses an ongoing significant challenge to the medical and health professionals due to the very demanding needs in health care despite its unpredictable prognosis. The etiology of vaginismus is complex: through multiple biopsycho- social processes, involving bidirectional connections between pelvic-genital (local) and higher mental function (central regulation). It has robust neural and psychological-cognitive loop feedback involvement. The internal neural circuit involves an inter-play of at least two-pathway systems, i.e. both "quick threat assessment" of occipital-limbic-occipital-prefrontal-pelvic-genital; and the chronic pain pathways through the genito-spinothalamic-parietal-pre-frontal system, respectively. In this review, a neurobiology root of vaginismus is deliberated with the central role of an emotional-regulating amygdala, and other neural loop, i.e. hippocampus and neo-cortex in the core psychopathology of fear, disgust, and sexual avoidance. Many therapists view vaginismus as a neglected art-and-science which demands a better and deeper understanding on the clinico-pathological correlation to enhance an effective model for the bio-psycho-social treatment. As vaginismus has a strong presentation in psychopathology, i.e. fear of penetration, phobic avoidance, disgust, and anticipatory anxiety, we highlighted a practical psychiatric approach to the clinical management of vaginismus, based on the current core knowledge in the perspective of neuroscience.
  6. Ling LS, Sidi H, Lope RAR, Das S, Baharudin A
    Curr Drug Targets, 2018 May 11.
    PMID: 29749310 DOI: 10.2174/1389450119666180511161420
    Transgender is a complex state of bio-psycho-social dimension of human sexuality. It encompasses cognitive-emotional-behavior component that makes the person unique in his or her sexual expression. Transgender tend to use cross sex hormone in order to eradicate their secondary sexual characteristics and to facilitate the shift to their experienced gender. The common masculinising sex hormone use, i.e. Female to Male Treatment Options (FMTO) is testosterone and for feminising hormone i.e. Male to Female Treatment Options (MFTO) is a combination of estrogen with anti-androgen, respectively. Cross sex hormone, i.e. FMTO, or MFTO has biological and psychological influences on the transgender individuals. Nevertheless, cross sex hormone may also poses a range of side effect profiles, varies from the biological to psychosocial impact. The psychological impact can be paramount until it causes severe mental-health problems and even suicide. Numerous ranges of bio-psycho-social influence of cross-sex hormone were highlighted in this review as fundamental core knowledge in the art to know practice when dealing with the treatment options. In psychiatry, the change in the biological appearance may have great influence in the transgender individual, especially in the context of psychosocial and cultural perspective.
  7. Bin Abdullah MFIL
    Curr Drug Targets, 2020;21(15):1566-1579.
    PMID: 32682371 DOI: 10.2174/1389450121666200719011653
    Kratom, or Mitragyna speciosa Korth., is a tropical plant prevalent in Southeast Asia, and it is utilized as a traditional remedy for symptomatic relief of various illnesses. It has been labeled as an atypical opioid with significant narcotic-like properties, capable of inducing kratom dependence among those who misuse or abuse it. The prevalence of kratom use has drastically increased worldwide, raising concerns among healthcare providers, particularly regarding the availability of efficacious treatment options for kratom dependence. This manuscript provides a comprehensive narrative review of literature focusing on the psychoactive alkaloids of kratom, the possible neurobiological and pathophysiological models underlying the occurrence of kratom dependence, and the clinical presentations and effective treatment options available for kratom dependence. The psychoactive alkaloids of kratom, such as mitragynine (MG) and 7-hydroxymitragynine (7-HMG), act as partial mu opioid agonists and induce kratom dependence. As a result, regular kratom use leads to withdrawal symptoms on abstinence, along with craving, tolerance, and cross-tolerance to morphine. The psychological withdrawal symptoms reported include depressed mood, anxiety, restlessness, irritability, and feeling tense, while the physical withdrawal symptoms are myalgia and body ache, joint pain, lacrimation, running nose, yawning, insomnia, diarrhea, feverish sensation, loss of appetite, tremors, itching over the body, loss of concentration, and chills. Neonatal withdrawal symptoms, such as oral intolerance, restlessness, irritability, and vomiting, are also reported in newborns of women who are on regular kratom use. Sublingual buprenorphine-naloxone (Suboxone) is reported as a promising treatment for detoxification and maintenance replacement therapy for kratom-dependent users. Alternative treatments for in-patient detoxification include intravenous clonidine and a combination of oral dihydrocodeine and lofexidine. We conclude by adding a note on the research gap concerning kratom dependence, which future studies should focus on.
  8. Mohamad NV, Ima-Nirwana S, Chin KY
    Curr Drug Targets, 2018;19(8):898-906.
    PMID: 28914204 DOI: 10.2174/1389450118666170913162739
    Cognitive function and testosterone level of men decline concurrently with age. Low testosterone levels are associated with higher risk of Alzheimer's disease and mild cognitive impairment in men. There are continuous debates on whether this relationship is casual. This paper aims to summarize the current evidence on the association between testosterone level and cognitive function in elderly men. The presence of testosterone, androgen receptor and its responsive genes indicates that testosterone has biological functions in the central nervous system. The ability of the body to convert testosterone into estrogen suggests that part of the actions of testosterone could be mediated by estrogen. Observational studies generally showed that low endogenous testosterone levels were associated with poor cognitive performance in healthy elderly men. Testosterone substitution exerted positive effects on certain cognitive domains in normal and hypogonadal elderly men. In conclusion, testosterone may influence cognitive function in elderly men and its substitution may be considered in men with cognitive impairment and testosterone deficiency.
  9. Lee SH, Ng CX, Wong SR, Chong PP
    Curr Drug Targets, 2023;24(6):484-508.
    PMID: 36999414 DOI: 10.2174/1389450124666230329123409
    MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.
  10. Chung PY
    Curr Drug Targets, 2017;18(4):414-420.
    PMID: 27758704 DOI: 10.2174/1389450117666161019102025
    Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial and life-threatening chronic infections in cystic fibrosis patients. This pathogen is wellknown for its ability to attach to surfaces of indwelling medical devices to form biofilms, which consist of a regular array of extracellular polymers. Tenaciously bound to the surface of devices and inherently resilient to antibiotic treatment, P. aeruginosa poses a serious threat in clinical medicine and contributes to the persistence of chronic infections. Studies on microbial biofilms in the past decade involved mainly the understanding of environment signals, genetic elements and molecular mechanisms in biofilm formation, tolerance and dispersal. The knowledge obtained from the studies of these mechanisms is crucial in the establishment of strategies to eradicate or to prevent biofilm formation. Currently, biofilm infections are usually treated with combinations of antibiotics and surgical removal, in addition to frequent replacement of the infected device. More recently, specific natural sources have been identified as antibiofilm agents against this pathogen. This review will highlight the recent progress made by plant-derived compounds against P. aeruginosa biofilm infections in both in vitro or in vivo models.
  11. Chung PY
    Curr Drug Targets, 2018;19(7):832-840.
    PMID: 28891454 DOI: 10.2174/1389450118666170911114604
    BACKGROUND: Bacterial resistance to antibiotics is one of the most serious challenge to global public health. The introduction of new antibiotics in clinical settings, i.e. agents that belong to a new class of antibacterials, act on new targets or has a novel mechanisms of action, may not be sufficient to cope with the emergence of multidrug-resistant pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli, which are increasingly prevalent in healthcare settings in Europe, the USA and Asia. Hence, coordinated efforts in minimizing the risk of spread of resistant bacteria and renewing research efforts in the search for novel antibacterial agents are urgently needed to manage this global crisis.

    OBJECTIVE: This review highlights the challenges and potential in using current technologies in the discovery and development of novel antibacterial agents to keep up with the constantly evolving resistance in bacteria.

    CONCLUSION: With the explosion of bacterial genomic data and rapid development of new sequencing technologies, the understanding of bacterial pathogenesis and identification of novel antibiotic targets have significantly improved.

  12. Shuid AN, Ima Nirwana S, Das S
    Curr Drug Targets, 2013 Dec;14(14):1631.
    PMID: 24383964
  13. Sakthiswary R, Das S
    Curr Drug Targets, 2013 Dec;14(13):1552-7.
    PMID: 23848441
    Osteoporosis is a common complication observed in rheumatoid arthritis (RA). Accelerated bone loss is always a matter of concern. The pathogenesis of RA may be important for better understanding of the bone loss. The mechanism involved in the bone loss in RA is not well understood although cytokines such as interleukin 1 and tumour necrosis factor α (TNF α) have been strongly implicated. TNF α antagonists have revolutionised the treatment of RA in the recent years. Beyond the control of disease activity in RA, accumulating evidence suggests that this form of therapy may provide beneficial effects to the bone metabolism and remodeling. An extensive search of the literature was performed in the Medline, Scopus and EBSCO databases to evaluate the documented research on the effects of TNF α antagonists in RA on bone mineral density and bone turnover markers. The available data based on our systematic review, depict a significant association between TNF α antagonists treatment and suppression of bone resorption.
  14. Thent ZC, Chakraborty C, Mahakkanukrauh P, Nik Ritza Kosai Nik Mahmood N, Rajan R, Das S
    Curr Drug Targets, 2017;18(11):1250-1258.
    PMID: 27138760 DOI: 10.2174/1389450117666160502151600
    BACKGROUND: Recently, there are scientific attempts to discover new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis.

    OBJECTIVE: The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques.

    METHODS: A thorough literature search of Pubmed, Google and Scopus databases was done.

    RESULTS: Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention.

    CONCLUSION: Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3&#039;,5&#039;-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system.

  15. Chakraborty C, Teoh SL, Das S
    Curr Drug Targets, 2017;18(14):1653-1663.
    PMID: 27231109 DOI: 10.2174/1389450117666160527142321
    BACKGROUND: The present era is fast experiencing rapid innovation in the genome-editing technology. CRISPR Cas9-mediated targeted genetic manipulation is an easy, cost-effective and scalable method. As a result, it can be used for a broad range of targeted genome engineering.

    OBJECTIVE: The main objective of the present review is to highlight the structural signature, classification, its mechanism and application from basic science to medicine and future challenges for this genome editing tool kit.

    RESULTS: The present review provides a brief description of the recent development of CRISPR-Cas9 genome editing technology. We discuss the paradigms shift for this next generation genome editing technology, CRISPR. The CRISPR structural significance, classification and its different applications are also being discussed. We portray the future challenges for this extraordinary genome in vivo editing tool. We also highlight the role of CRISPR genome editing in curing many diseases.

    CONCLUSION: Scientists and researchers are constantly looking one genome editing tool that is competent, simple and low-cost assembly of nucleases. It can target any particular site without any off-target mutations in the genome. The CRISPR-Cas9 has all of the above characteristics. The genome engineering technology may be a strong and inspiring technology meant for the next generation of drug development.

  16. Teoh SL, Das S
    Curr Drug Targets, 2017 Nov 30;18(16):1880-1892.
    PMID: 27628948 DOI: 10.2174/1389450117666160907153338
    BACKGROUND: The incidence of lung cancers has increased globally. Increased exposure to tobacco, passive smoking, less consumption of vegetables and fruits and occupational exposure to asbestos, arsenic and chromium are the main risk factors. The pathophysiology of lung cancer is complex and not well understood. Various microRNAs, genes and pathways are associated with lung cancers. The genes involved in lung cancers produce proteins involved in cell growth, differentiation, different cell cycles, apoptosis, immune modulation, tumor spread and progression. The Hippo pathway (also known as the Salvador-Warts-Hippo pathway) is the latest emerging concept in cancers. The Hippo pathway plays an important role in controlling the size of the tissue and organ by virtue of its action on cell proliferation and apoptosis.

    OBJECTIVE: In the present review, we highlight the mammalian Hippo pathway, role of its core members, its upstream regulators, downstream effectors and the resistance cases in lung cancers.

    RESULTS: Specific interaction of Mer with cell surface hyaluronan receptor CD44 is vital in cell contact inhibition, thereby activating Hippo pathway. Both transcription co-activators YAP and TAZ (also known as WWTR1, being homologs of Drosophila Yki) are important regulators of proliferation and apoptosis, and serve as major downstream effectors of the Hippo pathway. Mutation of NF2, the upstream regulator of Hippo pathway is linked to the cancers.

    CONCLUSION: Targeting YAP and TAZ may be important for future drug delivery and treatment.

  17. Mohamed RMP, Kumar J, Yap E, Mohamed IN, Sidi H, Adam RL, et al.
    Curr Drug Targets, 2019;20(2):158-165.
    PMID: 28641520 DOI: 10.2174/1389450118666170622092824
    Memories associated with substance use disorders, or substance-associated cues increase the likelihood of craving and relapse during abstinence. There is a growing consensus that manipulation of synaptic plasticity may reduce the strength of substance abuse-related memories. On the biological front, there are new insights that suggest memories associated with substance use disorder may follow unique neurobiological pathways that render them more accessible to pharmacological intervention. In parallel to this, research in neurochemistry has identified several potential candidate molecules that could influence the formation and maintenance of long-term memory. Drugs that target these molecules (blebbistatin, isradipine and zeta inhibitory peptide) have shown promise at the preclinical stage. In this review, we shall provide an overview of the evolving understanding on the biochemical mechanisms involved in memory formation and expound on the premise that substance use disorder is a learning disorder.
  18. Teoh SL, Das S
    Curr Drug Targets, 2018;19(2):128-143.
    PMID: 28294046 DOI: 10.2174/1389450118666170309143419
    BACKGROUND: The Notch pathway is an evolutionarily conserved, intercellular signalling system which is present in all multicellular organisms and mammals. The Notch pathway plays an important role in the embryonic development as it controls cell proliferation, cell differentiation and binary cell fate decisions.

    OBJECTIVE: In the present review, we highlight the Notch signalling pathway components i.e. Notch receptors, ligands, effector, and their regulators. We also discuss the tumor biology of the Notch pathway involved in various cancers.

    RESULTS: Interestingly, the Notch signalling pathway is dysregulated in many cancers. Notch may serve as oncogene or tumor suppressor and plays an important role in cancers of the liver, pancreas, endometrium of uterus, ovary, prostate, bladder and colon. The activation of Notch pathway plays a vital role in the progression of some cancer. In addition, Notch pathway activation was also shown to drive chemoresistance in cancer, as well. Chemotherapeutically, combined NOTCH1 inhibitor synergistically attenuated chemotherapy-enriched cancer stem cell population both in vitro and in vivo. This may prove to be beneficial in the treatment of cancer.

    CONCLUSION: The Notch inhibitors possess anti-proliferative effects on cancer, thereby serving as a new treatment for cancer.

  19. Theng YM, Wahab S, Wahab NAA, Sidi H, Das S
    Curr Drug Targets, 2019;20(2):173-181.
    PMID: 29046149 DOI: 10.2174/1389450118666171017163741
    Nicotine dependence has progressively become a foremost community health interest in both the developed and developing nations due to the economic burden and health-related problems. Smoking was significantly higher among patients with schizophrenia in comparison to the general population. Nicotine dependence is not only associated with public stress, but among patients with schizophrenia, smoking brings major challenges to the management. Nicotine may diminish the therapeutic efficacy of the bioavailability of the psychopharmacological agents in-vivo. These duo perturbations, i.e. two clinical conditions co-existed may prevent psychotic symptoms remission among patients suffering from schizophrenia who smoke at the same time. The aim of this review was to highlight the role of pharmacological treatment options and strategies for patients with nicotine dependence in schizophrenia with emphasis on the underlying neurobiological process. The role of nicotine replacement therapy, i.e. norepinephrine-dopamine reuptake inhibition (NDRI) e.g. bupropion and selective partial agonist of α4β2 and full α7-nicotinic acetylcholine receptor e.g. varenicline was deliberated. An ideal choice of drug targets for patients with schizophrenia with nicotine dependence is pivotal to foster a better therapeutic alliance.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links