Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

  2. Atia A, Alrawaiq NS, Abdullah A
    Curr Pharm Biotechnol, 2021;22(8):1085-1098.
    PMID: 32988349 DOI: 10.2174/1389201021666200928095950
    BACKGROUND: The most common preparation of tocotrienols is the Tocotrienol-Rich Fraction (TRF). This study aimed to investigate whether TRF induced liver Nrf2 nuclear translocation and influenced the expression of Nrf2-regulated genes.

    METHODS: In the Nrf2 induction study, mice were divided into control, 2000 mg/kg TRF and diethyl maleate treated groups. After acute treatment, mice were sacrificed at specific time points. Liver nuclear extracts were prepared and Nrf2 nuclear translocation was detected through Western blotting. To determine the effect of increasing doses of TRF on the extent of liver nuclear Nrf2 translocation and its implication on the expression levels of several Nrf2-regulated genes, mice were divided into 5 groups (control, 200, 500 and 1000 mg/kg TRF, and butylated hydroxyanisole-treated groups). After 14 days, mice were sacrificed and liver RNA was extracted for qPCR assay.

    RESULTS: 2000 mg/kg TRF administration initiated Nrf2 nuclear translocation within 30 min, reached a maximum level of around 1 h and dropped to half-maximal levels by 24 h. Incremental doses of TRF resulted in dose-dependent increases in liver Nrf2 nuclear levels, along with concomitant dosedependent increases in the expressions of Nrf2-regulated genes.

    CONCLUSION: TRF activated the liver Nrf2 pathway resulting in increased expression of Nrf2-regulated cytoprotective genes.

  3. Yunos NM, Osman A, Jauri MH, Sallehudin NJ, Mutalip SSM
    Curr Pharm Biotechnol, 2020;21(1):37-44.
    PMID: 31530258 DOI: 10.2174/1389201020666190917154850
    BACKGROUND: 17βH-neriifolin, a cardiac glycoside compound had been successfully isolated from Cerbera odollam leaves based on the bioassay guided-isolation procedure. The aim of these studies were to determine the in vitro anti-cancer and binding effects of 17βH-neriifolin on Na+, K+-ATPase.

    METHODS: The in vitro anti-cancer effects were evaluated using Sulphorhodamine B and Hoescht 33342 assays. The Na+, K+-ATPase assay was carried out using Malachite Green assay. In silico molecular docking studies and in vitro malachite green assay were used to predict the binding activities of 17βH-neriifolin on Na+, K+-ATPase and ouabain was also included as for comparison studies.

    RESULTS: The compound was tested against breast (MCF-7, T47D), colorectal (HT-29), ovarian (A2780, SKOV-3) and skin (A375) cancer cell lines that gave IC50 values ranged from 0.022 ± 0.0015 to 0.030 ± 0.0018 μM. The mechanism of cell death of 17βH-neriifolin was further evaluated using Hoescht 33342 assay and it was found that the compound killed the cancer cells via apoptosis. 17βHneriifolin and ouabain both bound at α-subunit in Na+, K+-ATPase and their binding energy were - 8.16 ± 0.74 kcal/mol and -8.18 ± 0.48 kcal/mol respectively.

    CONCLUSION: The results had confirmed the anti-proliferative effects exerted by 17βH-neriifolin in the breast, colorectal, ovarian and skin cancer cell lines. 17βH-neriifolin had shown to cause apoptotic cell death in the respective cancer cell lines.17βH-neriifolin and ouabain both bound at α-subunit in Na+, K+-ATPase and their binding energy were -8.16 ± 0.74 kcal/mol and -8.18 ± 0.48 kcal/mol respectively. This is the first report to reveal that 17βH-neriifolin managed to bind to the pocket of α-subunit of Na+.K+-ATPase.

  4. Yasin ZAM, Ibrahim F, Rashid NN, Razif MFM, Yusof R
    Curr Pharm Biotechnol, 2017;18(11):864-876.
    PMID: 29256348 DOI: 10.2174/1389201019666171219105920
    BACKGROUND: Skin is the largest and most visible organ of the body. Many of its functions include temperature regulation, immunity from microorganisms, maintaining electrolyte balance, and protection from physical injuries, chemical agents and ultraviolet (UV) radiation. Aging occurs in every layer of the skin, primarily due to the degradation of its components. Induction of degradative enzymes and the abundant production of reactive oxygen species lead to skin aging. Understanding the complexity of skin structure and factors contributing to the skin aging will help us impede the aging process. Applications of anti-aging products are a common method to prevent or repair damages that lead to aging.

    CONCLUSION: This review will provide information on the causes and indicators of skin aging as well as examine studies that have used plants to produce anti-aging products.

  5. Kah Man L, An Gie O, Chian Huey M, Yong P, Siik Kee L, Cheng Ze L, et al.
    Curr Pharm Biotechnol, 2023 Oct 25.
    PMID: 37921129 DOI: 10.2174/0113892010258617231020062637
    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
  6. Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Massadeh MM
    Curr Pharm Biotechnol, 2024 Jan 12.
    PMID: 38231054 DOI: 10.2174/0113892010279217240102100405
    BACKGROUND: The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles [AgNP] could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms.

    METHODS: AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes.

    RESULTS: The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations [MBEC] ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases.

    CONCLUSION: The present findings encourage the development of alternative therapies with high efficacy and low toxicity.

  7. Alam J, Jantan I, Kumolosasi E, Nafiah MA, Mesaik MA
    Curr Pharm Biotechnol, 2018;19(14):1156-1169.
    PMID: 30539691 DOI: 10.2174/1389201020666181211124954
    BACKGROUND: Standardized extract of Phyllanthus amarus has been shown to possess inhibitory effects on cellular and humoral immune responses in Wistar-Kyoto rats and Balb/c mice.

    OBJECTIVE: In the present study, the standardized extract of P. amarus was investigated for its suppressive effects on type II collagen-induced rheumatoid arthritis (TCIA) in Sprague Dawley rats.

    METHOD: The major components of the extracts, lignans and phenolic compounds were analysed by using a validated reversed phase HPLC and LC-MS/MS. A rheumatoid arthritis rat model was induced by administering a bovine type II collagen emulsion subcutaneously at the base of tail, on day 0 and 7 of the experiment. Effects of the extract on severity assessment, changes in the hind paw volume, bone mineral density, body weight and body temperature were measured. Concentrations of cytokines (TNF-α, IL-1β, IL-1α, IL-6) released, matrix metalloproteinases (MMP-1, MMP-3 MMP-9) and their inhibitor (TIMP-1), haematological and biochemical changes were also measured. ELISA was used to measure the cytokines and proteinases in the rat serum and synovial fluid according to manufacturer's instructions.

    RESULTS: The extract dose-dependently modulated the progression in physical parameters (i.e. decrease in body weight, increase in body temperature, reduced hind paw volume, reduced the severity of arthritis), bone mineral density, haematological and biochemical perturbations, serum cytokines production and levels of matrix metalloproteinases and their inhibitor in the synovial fluid. Histopathological examination of the knee joint also revealed that the extract effectively reduced synovitis, pannus formation, bone resorption and cartilage destruction.

    CONCLUSION: The results suggest that the oral administration of a standardized extract of P. amarus was able to suppress the humoral and cellular immune responses to type II collagen, resulting in the reduction of the development of TCIA in the rats.

  8. Awang AF, Ferdosh S, Sarker MZ, Sheikh HI, Ghafoor K, Yunus K
    Curr Pharm Biotechnol, 2016 9 23;17(12):1024-1035.
    PMID: 27655363
    Stereospermum fimbriatum is one of the medicinal plants that has been claimed to be used traditionally to treat several illnesses such as stomachache, earache, skin irritation and postpartum illness. The genus of this plant is known to possess medicinal properties in every part of the plant. Therapeutic potential of S. fimbriatum is anticipated based on numerous previous studies that documented variety of phytochemical contents and bioactivity of the genus. The most reported bioactivities of its genus are antimicrobial, antioxidant, anti-diabetic, anti-inflammatory, anti-diarrheal and analgesic activities. S. fimbriatum is a rare species that has not been discovered yet. Thus, this review aims at highlighting the potentials of S. fimbriatum by collecting available data on the bioactivities of its genus and set the directions for future research on this plant.
  9. Haque MA, Jantan I
    Curr Pharm Biotechnol, 2017;18(9):696-720.
    PMID: 29141544 DOI: 10.2174/1389201018666171115115458
    BACKGROUND: Zingiber zerumbet (L.) Roscoe ex Sm. (family, Zingiberaceae) is a potent medicinal herb widely known as shampoo ginger and its rhizome is used in numerous ethnomedicinal applications including antipyretic, anti-inflammatory, antibacterial, anti-diarrheal, antidiabetics, carminative, and diuretic. The aim of this review was to bring together all the scientific updates on the phytochemistry and pharmacological activities of this herb, including their toxicological studies, and critically analyzed the outcomes to provide directions for future research on the herb as potential source of bioactive metabolites for pharmaceutical and nutraceutical applications.

    METHODS: A structured electronic search on worldwide accepted scientific databases (Web of Science, PubMed, Google Scholar, Science Direct, SciFinder, Wiley Online Library) was carried out to compile the relevant information. Some information was obtained from books and database on medicinal plants used in various countries.

    RESULTS: About 60 metabolites, mainly polyphenols, and terpenoids have been isolated and identified. However, most of the reported pharmacological studies were based on crude extracts, and only a few of those isolated metabolites, particularly zerumbone have been investigated for biological and pharmacological activities. Many of the mechanistic studies to understand the pharmacological effects of the plant are limited by many considerations with regard to design, experimentation and interpretation.

    CONCLUSION: The bioactive metabolites should be further investigated on their safety and more elaborate preclinical studies before clinical trials can be undertaken.

  10. Busra MFM, Lokanathan Y
    Curr Pharm Biotechnol, 2019;20(12):992-1003.
    PMID: 31364511 DOI: 10.2174/1389201020666190731121016
    Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.
  11. Asif M, Yousaf HM, Saleem M, Hussain L, Mahrukh, Zarzour RA, et al.
    Curr Pharm Biotechnol, 2022;23(5):728-739.
    PMID: 34225619 DOI: 10.2174/1389201022666210702120956
    BACKGROUND: Raphanus sativus is traditionally used as an anti-inflammatory agent.

    OBJECTIVES: The current study was designed to explore the in vivo anti-inflammatory and antiangiogenic properties of Raphanus sativus seeds oil.

    METHODS: Cold press method was used for the extraction of oil (RsSO) and was characterised by using GC-MS techniques. Three in vitro antioxidant assays (DPPH, ABTS and FRAP) were performed to explore the antioxidant potential of RsSO. Disc diffusion methods were used to study in vitro antimicrobial properties. In vivo anti-inflammatory properties were studied in both acute and chronic inflammation models. In vivo chicken chorioallantoic membrane assay was performed to study antiangiogenic effects. Molecular mechanisms were identified using TNF-α ELISA kit and docking tools.

    RESULTS: GC-MS analysis of RsSO revealed the presence of hexadecanoic and octadecanoic acid. Findings of DPPH, ABTS, and FRAP models indicated relatively moderate radical scavenging properties of RsSO. Oil showed antimicrobial activity against a variety of bacterial and fungal strains tested. Data of inflammation models showed significant (p < 0.05) anti-inflammatory effects of RsSO in both acute and chronic models. 500 mg/kg RsSO halted inflammation development significantly better (p < 0.05) as compared with lower doses. Histopathological evaluations of paws showed minimal infiltration of inflammatory cells in RsSO-treated animals. Findings of TNF-α ELSIA and docking studies showed that RsSO has the potential to down-regulate the expression of TNF-α, iNOS, ROS, and NF-κB respectively. Moreover, RsSO showed in vivo antiangiogenic effects.

    CONCLUSION: Data of the current study highlight that Raphanus sativus seeds oil has anti-inflammatory, and antiangiogenic properties and can be used as an adjunct to standard NSAIDs therapy which may reduce the dose and related side effects.

  12. Yunos NM, Al-Thiabat MG, Sallehudin NJ, A Wahab H
    Curr Pharm Biotechnol, 2024 Feb 29.
    PMID: 38425119 DOI: 10.2174/0113892010273336240221101506
    BACKGROUND: Quassinoids are degraded triterpene compounds that can be obtained from various species of the Simaroubaceae plant family, including Eurycoma longifolia. Quassinoids are the major compounds in E. longifolia, and they are known to have various medicinal potentials, such as anticancer and antimalarial properties. Dihydrofolate reductase (DHFR) was reported to be one of the important targets for certain anticancer and antimalarial drugs. Twelve quassinoids from E. longifolia were identified to have anticancer effects based on their IC50 values. This study aimed to evaluate the interactions of these twelve quassinoids with DHFR via Autodock 4.2 software and Biovia Discovery Studio Visualiser.

    METHODS: Twelve quassinoids from E. longifolia and their interactions with DHFR were evaluated via Autodock 4.2 software and Biovia Discovery Studio Visualiser. Their drug-likeness and pharmacokinetic properties were also assessed using the ADMETlab 2.0 program.

    RESULTS: The molecular docking results showed that eleven quassinoids showed better docking scores than methotrexate, in which the binding energy (BE) of these quassinoids ranged from - 7.87 to -9.58 kcal/mol. Their inhibition constant (Ki) ranged from 0.095 to 1.71 μM. At the same time, the BE and Ki values for methotrexate were -7.80 kcal/mol and 1.64 μM, respectively.

    CONCLUSION: From the analysis, 6-dehydrolongilactone and eurycomalide B are among the twelve compounds that showed great potential as hit-to-lead compounds based on the docking score on DHFR, drug-likeness, and ADMET properties. These results suggest a great potential to pursue validation studies via in vitro and in vivo models.

  13. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

  14. Bawadikji AA, Teh CH, Kader MABSA, Sulaiman SAS, Ibrahim B
    Curr Pharm Biotechnol, 2017;18(9):740-747.
    PMID: 29110602 DOI: 10.2174/1389201018666171103141828
    BACKGROUND: Warfarin, an anticoagulant medication, is prescribed regularly despite of its bleeding tendency for the prevention and/or treatment of various thromboembolic conditions, such as deep vein thrombosis, and complications associated with atrial fibrillation, and myocardial infarction, but because of its narrow therapeutic window, it has a lot of interactions with drugs and diet.

    METHODS: Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed.

    RESULTS: There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet.

    CONCLUSION: Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome.

  15. Zhang Y, Shaari RB, Awang Nawi MAB, Hassan AB, Cui C
    Curr Pharm Biotechnol, 2024 Jan 04.
    PMID: 38178677 DOI: 10.2174/0113892010276692231220103636
    Primarily sourced from Asteraceae family herbs such as the Dandelion, Taraxasterol is a pentacyclic triterpenoid lauded for its extensive biological functionalities. Its therapeutic potency is demonstrated in various disease models, encompassing enteritis, arthritis, acute hepatic injury, and pneumonia. Scientific literature underscores its anti-inflammatory, antioxidant, and antineoplastic attributes. The primary aim of this study is to thoroughly explore the diseasemodulating mechanisms and effects of taraxasterol. We endeavor to provide an exhaustive review of the experimental subjects, intervention components, distinct action modalities, contributing factors, and protein pathway expressions associated with taraxasterol, systematically represented via diagrams and tables. Such a schematic representation encourages a continued academic dialogue concerning taraxasterol's pharmacological characteristics. This review is envisioned as a practical guide for the selection of experimental subjects and methodologies in prospective research. It is intended to further illuminate taraxasterol's pharmacodynamics, thereby offering theoretical and empirical justification for its clinical application.
  16. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al.
    Curr Pharm Biotechnol, 2018;19(4):276-292.
    PMID: 29874994 DOI: 10.2174/1389201019666180605125234
    BACKGROUND: Targeting chemotherapeutic agents to the tumor tissues and achieving accumulation with ideal release behavior for desired therapy requires an ideal treatment strategy to inhibit division of rapid growing cancerous cells and as an outcome improve patient's quality of life. However, majority of the available anticancer therapies are well known for their systemic toxicities and multidrug resistance.

    METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.

    RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.

  17. Chung PY, Gan MY, Chin BY
    Curr Pharm Biotechnol, 2021 Aug 05.
    PMID: 34365946 DOI: 10.2174/1389201022666210806092643
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has been constantly evolving and developing resistance against conventional antibiotics. One of the key features of MRSA that enables it to develop resistance to antibiotics and host immune system is its ability to form biofilm in indwelling medical devices. In previous studies, the antimicrobial activity and mechanisms of action of three known pentacyclic triterpenoids α-amyrin, betulinic acid and betulinaldehyde against planktonic cells of MRSA were determined and elucidated.

    OBJECTIVE: This study was carried out to evaluate the ability of the three compounds to significantly reduce the biomass of pre-formed biofilms of MRSA and metabolic activity of the bacterial cells in the biofilm.

    METHODS: The anti-biofilm activity of α-amyrin, betulinic acid and betulinaldehyde, individually and in combination with oxacillin or vancomycin, against reference strain of MRSA in pre-formed biofilm were evaluated using the crystal violet and resazurin assays.

    RESULTS: α-amyrin and betulinic acid significantly reduced the biomass of pre-formed biofilms of MRSA as individual compounds and in combination with oxacillin or vancomycin. Although betulinaldehyde individually increased the biomass, selected combinations with oxacillin and vancomycin were able to reduce the biomass. All three compounds did not show cytotoxic properties on normal mammalian cells.

    CONCLUSION: The three pentacyclic triterpenoids could significantly reduce pre-formed biofilm of MRSA with no cytotoxic effects on normal mammalian cells. These findings demonstrated that pentacyclic triterpenoids have the potential to be developed further as antibiofilm agents against MRSA cells in biofilms, to combat infections caused by multidrug-resistant and biofilm-forming S. aureus.

  18. Tan MX, Agyei D, Pan S, Danquah MK
    Curr Pharm Biotechnol, 2015;16(9):816-22.
    PMID: 26119365
    BACKGROUND: Effective bimolecular adsorption of proteins onto solid matrices is characterized by in-depth understanding of the biophysical features essential to optimize the adsorption performance.

    RESULTS: The adsorption of bovine serum albumin (BSA) onto anion-exchange Q-sepharose solid particulate support was investigated in batch adsorption experiments. Adsorption kinetics and isotherms were developed as a function of key industrially relevant parameters such as polymer loading, stirring speed, buffer pH, protein concentration and the state of protein dispersion (solid/aqueous) in order to optimize binding performance and adsorption capacity. Experimental results showed that the first order rate constant is higher at higher stirring speed, higher polymer loading, and under alkaline conditions, with a corresponding increase in equilibrium adsorption capacity. Increasing the stirring speed and using aqueous dispersion protein system increased the adsorption rate, but the maximum protein adsorption was unaffected. Regardless of the stirring speed, the adsorption capacity of the polymer was 2.8 mg/ml. However, doubling the polymer loading increased the adsorption capacity to 9.4 mg/ml.

    CONCLUSIONS: The result demonstrates that there exists a minimum amount of polymer loading required to achieve maximum protein adsorption capacity under specific process conditions.

  19. Okechukwu PN, Ekeuku SO, Chan HK, Eluri K, Froemming GRA
    Curr Pharm Biotechnol, 2021;22(2):288-298.
    PMID: 32744968 DOI: 10.2174/1389201021666200730124208
    BACKGROUND: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing β-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage.

    OBJECTIVE: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model.

    METHODS: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification.

    RESULTS: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB.

    CONCLUSION: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.

  20. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS
    Curr Pharm Biotechnol, 2015;16(10):853-70.
    PMID: 26212563 DOI: 10.2174/1389201016666150727120618
    Diabetes mellitus has been a threat to humans for many years. Amongst the different diabetes types, type 2 diabetes mellitus is the most common, and this is due to drastic changes in human lifestyle such as lack of exercise, stressful life and so on. There are a large number of conventional treatment methods available for type 2 diabetes mellitus. However, most of these methods are curative and are only applicable when the patient is highly symptomatic. Effective treatment strategies should be geared towards interfering with cellular and bio molecular mechanisms associated with the development and sustenance of the disease. In recent years, research into the medical potential of nanoparticles has been a major endeavor within the pharmaceutical industries. Nanoparticles display unique and tuneable biophysical characteristics which are determined by their shape and size. Nanoparticles have been used to manifest the properties of drugs, and as carriers for drug and vaccine delivery. Notwithstanding, there are further opportunities for nanoparticles to augment the treatment of a wide range of life threatening diseases that are yet to be explored. This review article seeks to highlight the application of potential nano-formulations in the treatment of type 2 diabetes mellitus. In addition, the activity of nanomedicine supplements in reversing insulin resistance is also discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links