Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Gorain B, Choudhury H, Yee GS, Bhattamisra SK
    Curr Pharm Des, 2019;25(26):2828-2841.
    PMID: 31333092 DOI: 10.2174/1381612825666190716102037
    Adenosine is a ubiquitous signaling nucleoside molecule, released from different cells within the body to act on vasculature and immunoescape. The physiological action on the proliferation of tumour cell has been reported by the presence of high concentration of adenosine within the tumour microenvironment, which results in the progression of the tumour, even leading to metastases. The activity of adenosine exclusively depends upon the interaction with four subtypes of heterodimeric G-protein-coupled adenosine receptors (AR), A1, A2A, A2B, and A3-ARs on the cell surface. Research evidence supports that the activation of those receptors via specific agonist or antagonist can modulate the proliferation of tumour cells. The first category of AR, A1 is known to play an antitumour activity via tumour-associated microglial cells to prevent the development of glioblastomas. A2AAR are found in melanoma, lung, and breast cancer cells, where tumour proliferation is stimulated due to inhibition of the immune response via inhibition of natural killer cells cytotoxicity, T cell activity, and tumourspecific CD4+/CD8+ activity. Alternatively, A2BAR helps in the development of tumour upon activation via upregulation of angiogenin factor in the microvascular endothelial cells, inhibition of MAPK and ERK 1/2 phosphorylation activity. Lastly, A3AR is expressed in low levels in normal cells whereas the expression is upregulated in tumour cells, however, agonists to this receptor inhibit tumour proliferation through modulation of Wnt and NF-κB signaling pathways. Several researchers are in search for potential agents to modulate the overexpressed ARs to control cancer. Active components of A2AAR antagonists and A3AR agonists have already entered in Phase-I clinical research to prove their safety in human. This review focused on novel research targets towards the prevention of cancer progression through stimulation of the overexpressed ARs with the hope to protect lives and advance human health.
  2. Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B
    Curr Pharm Des, 2019;25(26):2808-2827.
    PMID: 31309883 DOI: 10.2174/1381612825666190712181955
    The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
  3. Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, et al.
    Curr Pharm Des, 2020;26(42):5380-5392.
    PMID: 33198611 DOI: 10.2174/1381612826999201116161143
    Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
  4. Liu S, Dang M, Lei Y, Ahmad SS, Khalid M, Kamal MA, et al.
    Curr Pharm Des, 2020;26(37):4808-4814.
    PMID: 32264807 DOI: 10.2174/1381612826666200407161842
    BACKGROUND: Alzheimer's disease (AD) is the most well-known reason for disability in persons aged greater than 65 years worldwide. AD influences the part of the brain that controls cognitive and non-cognitive functions.

    OBJECTIVE: The study focuses on the screening of natural compounds for the inhibition of AChE and BuChE using a computational methodology.

    METHODS: We performed a docking-based virtual screening utilizing the 3D structure of AChE and BuChE to search for potential inhibitors for AD. In this work, a screened inhibitor Ajmalicine similarity search was carried out against a natural products database (Super Natural II). Lipinski rule of five was carried out and docking studies were performed between ligands and enzyme using 'Autodock4.2'.

    RESULTS: Two phytochemical compounds SN00288228 and SN00226692 were predicted for the inhibition of AChE and BuChE, respectively. The docking results revealed Ajmalicine, a prominent natural alkaloid, showing promising inhibitory potential against AChE and BuChE with the binding energy of -9.02 and -8.89 kcal/mole, respectively. However, SN00288228- AChE, and SN00226692-BuChE were found to have binding energy -9.88 and -9.54 kcal/mole, respectively. These selected phytochemical compounds showed better interactions in comparison to Ajmalicine with the target molecule.

    CONCLUSION: The current study verifies that SN00288228 and SN00226692 are more capable inhibitors of human AChE and BuChE as compared to Ajmalicine with reference to ΔG values.

  5. Islam MA, Alam F, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(28):4451-69.
    PMID: 27229722
    Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by a persistently high titer of antiphospholipid antibodies (aPLs). In addition to pregnancy morbidity, arterial and/or venous thrombosis is another clinical feature of APS. Regardless of the type of APS, the thrombi formed by the induction of aPLs can lead to deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke and gangrene. Although the concept of APS was introduced approximately 32 years ago, its thrombogenic pathophysiology is still unclear. Therefore, patients are treated with anticoagulant and/or antiplatelet regimens just as in other thrombotic disorders even though the thrombotic pathophysiology is mainly aPLs-mediated. In this review, we provided an update of the cellular, auto-immune and genetic factors known to play important roles in the generation of thrombi. Current successful regimens are also outlined along with potential emerging treatment strategies that may lead to the optimum management of thrombotic APS patients.
  6. Ng PQ, Ling LSC, Chellian J, Madheswaran T, Panneerselvam J, Kunnath AP, et al.
    Curr Pharm Des, 2020;26(36):4580-4590.
    PMID: 32520681 DOI: 10.2174/1381612826666200610111013
    Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.
  7. Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M
    Curr Pharm Des, 2021;27(6):802-815.
    PMID: 32942973 DOI: 10.2174/1381612826999200917154747
    BACKGROUND: Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development.

    OBJECTIVE: Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption.

    CONCLUSION: The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.

  8. Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM
    Curr Pharm Des, 2019;25(11):1147-1162.
    PMID: 31258069 DOI: 10.2174/1381612825666190618152133
    BACKGROUND: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

    METHODS: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

    RESULTS: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

    CONCLUSION: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

  9. Kumarasamy V, Anbazhagan D, Subramaniyan V, Vellasamy S
    Curr Pharm Des, 2018;24(27):3172-3175.
    PMID: 30084327 DOI: 10.2174/1381612824666180807101536
    Blastocystis sp. is a unicellular parasitic microorganism commonly found in the gastrointestinal tracts of humans and animals. It causes symptomatic or asymptomatic infection and its route of transmission is via fecal-oral. High prevalence of Blastocystis infection in developing countries is usually due to poor hygiene practices, exposure to animals infected with the parasite and intake of contaminated water or food. Blastocystis infected individuals often suffer from diarrhea, abdominal pain, nausea, and stomach bloating. Even though pathogenicity of Blastocystis is unclear, it is commonly associated with irritable bowel syndrome. In this review, we have analysed the evidence that shows the association between this microorganism and gastrointestinal disorders. There have been a number of studies which showed that the pathogenicity of Blastocystis is related to its different STs. The pathogenicity is speculated to be due to cysteine proteases formation which stimulates mucosal cells to release interleukin-8 which has been associated with extreme dehydration and gut inflammation. In vitro studies on human colonic epithelial cells revealed that incubation of Blastocystis modulated the host immune response by stimulating the formation of pro-inflammatory cytokines and granulocyte macrophage colonystimulating factor. Metronidazole is found to be the first-line drug of choice. Another treatment option is the combination therapy with trimethoprim/sulfamethoxazole.
  10. Hussain MA, Ashraf MU, Muhammad G, Tahir MN, Bukhari SNA
    Curr Pharm Des, 2017;23(16):2377-2388.
    PMID: 27779081 DOI: 10.2174/1381612822666160928143328
    The therapy of various diseases by the drugs entrapped in calixarene derivatives is gaining attraction of researchers nowadays. Calixarenes are macrocyclic nano-baskets which belong to cavitands class of host-guest chemistry. They are the marvelous hosts with distinct hydrophobic three dimensional cavities to entrap and encapsulate biologically active guest drugs. Calixarene and its derivatives develop inclusion complexes with various types of drugs and vitamins for their sustained/targeted release. Calixarene and its derivatives are used as carriers for anti-cancer, anti-convulsant, anti-hypertensive, anthelmentic, anti-inflammatory, antimicrobial and antipsychotic drugs. They are the important biocompatible receptors to improve solubility, chemical reactivity and decrease cytotoxicity of poorly soluble drugs in supramolecular chemistry. This review focuses on the calixarene and its derivatives as the state-of-the-art in host-guest interactions for important drugs. We have also critically evaluated calixarenes for the development of prodrugs.
  11. Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ
    Curr Pharm Des, 2017;23(25):3689-3698.
    PMID: 28625137 DOI: 10.2174/1381612823666170616081256
    BACKGROUND: Chemerin is an adipokine that induces insulin resistance by the mechanism of inflammation in adipose tissue but these are still unclear. A high level of chemerin in humans is considered as a marker of inflammation in insulin resistance and obesity as well as in type 2 diabetes mellitus. Despite the role of chemerin in insulin resistance progression, chemerin as one of the novel adipokines is proposed to be involved in high cancer risk and mortality.

    AIM: The aim of this paper was to review the role of CMKLR-1 receptor and the potential therapeutic target in the management of chemerin induced type 2 diabetes mellitus and cancer.

    PATHOPHYSIOLOGY: Increased chemerin secretion activates an inflammatory response. The inflammatory response will increase the oxidative stress in adipose tissue and consequently results in an insulin-resistant state. The occurrence of inflammation, oxidative stress and insulin resistance leads to the progression of cancers.

    CONCLUSION: Chemerin is one of the markers that may involve in development of both cancer and insulin resistance. Chemokine like receptor- 1 (CMKLR-1) receptor that regulates chemerin levels exhibits a potential therapeutic target for insulin resistance, type 2 diabetes and cancer treatment.

  12. Md S, Karim S, Saker SR, Gie OA, Hooi LC, Yee PH, et al.
    Curr Pharm Des, 2020;26(19):2222-2232.
    PMID: 32175832 DOI: 10.2174/1381612826666200316154300
    Rotigotine is a non-ergoline, high lipophilic dopamine agonist. It is indicated as the first-line therapy for Parkinson's disease (PD) and Restless Leg Syndrome (RLS). However, the precise mechanism of rotigotine is yet to be known. Rotigotine has similar safety and tolerability to the other oral non-ergolinic dopamine antagonists in clinical trials, which include nausea, dizziness and somnolence. Neupro® was the first marketed transdermal patch formulation having rotigotine. The transdermal delivery system is advantageous as it enables continuous administration of the drug, thus providing steady-state plasma drug concentration for 24-hours. Intranasal administration of rotigotine allows the drug to bypass the blood-brain barrier enabling it to reach the central nervous system within minutes. Rotigotine can also be formulated as an extended-release microsphere for injection. Some challenges remain in other routes of rotigotine administration such as oral, parenteral and pulmonary, whereby resolving these challenges will be beneficial to patients as they are less invasive and comfortable in terms of administration. This review compiles recent work on rotigotine delivery, challenges and its future perspective.
  13. Baharuddin A, Hassan AA, Sheng GC, Nasir SB, Othman S, Yusof R, et al.
    Curr Pharm Des, 2014;20(21):3428-44.
    PMID: 24001228
    Viruses belonging to the Flaviviridae family primarily spread through arthropod vectors, and are the major causes of illness and death around the globe. The Flaviviridae family consists of 3 genera which include the Flavivirus genus (type species, yellow fever virus) as the largest genus, the Hepacivirus (type species, hepatitis C virus) and the Pestivirus (type species, bovine virus diarrhea). The flaviviruses (Flavivirus genus) are small RNA viruses transmitted by mosquitoes and ticks that take over host cell machinery in order to propagate. However, hepaciviruses and pestiviruses are not antropod-borne. Despite the extensive research and public health concern associated with flavivirus diseases, to date, there is no specific treatment available for any flavivirus infections, though commercially available vaccines for yellow fever, Japanese encephalitis and tick-born encephalitis exist. Due to the global threat of viral pandemics, there is an urgent need for new drugs. In many countries, patients with severe cases of flavivirus infections are treated only by supportive care, which includes intravenous fluids, hospitalization, respiratory support, and prevention of secondary infections. This review discusses the strategies used towards the discovery of antiviral drugs, focusing on rational drug design against Dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), Yellow Fever virus (YFV) and Hepatitis C virus (HCV). Only modified peptidic, nonpeptidic, natural compounds and fragment-based inhibitors (typically of mass less than 300 Da) against structural and non-structural proteins are discussed.
  14. Alam F, Islam MA, Gan SH, Mohamed M, Sasongko TH
    Curr Pharm Des, 2016;22(28):4398-419.
    PMID: 27229720
    DNA methylation, a major regulator of epigenetic modifications has been shown to alter the expression of genes that are involved in aspects of glucose metabolism such as glucose intolerance, insulin resistance, β-cell dysfunction and other conditions, and it ultimately leads to the pathogenesis of type 2 diabetes mellitus (T2DM). Current evidences indicate an association of DNA methylation with T2DM. This review provides an overview of how various factors play crucial roles in T2DM pathogenesis and how DNA methylation interacts with these factors. Additionally, an update on current techniques of DNA methylation analysis with their pros and cons is provided as a basis for the adoption of suitable techniques in future DNA methylation research towards better management of T2DM. To elucidate the mechanistic relationship between vital environmental factors and the development of T2DM, a better understanding of the changes in gene expression associated with DNA methylation at the molecular level is still needed.
  15. Gillani SW
    Curr Pharm Des, 2016;22(42):6469-6476.
    PMID: 27526787 DOI: 10.2174/1381612822666160813235704
    BACKGROUND: Prevalence of chronic diseases are on the rise with majority occurring in developing countries where the projected death caused by chronic diseases will reach 50 million by the year 2020.
    OBJECTIVE: The aim of the study is to evaluate and compare the outcomes of wireless mobile device (Telemonitoring) with Pharmacist intervention and usual care on glycemic control and clinical outcomes.
    METHOD: This study is a six-month parallel groups interventional longitudinal multi-center study with a control arm. The study participants consist of patient diagnosed with type 2 diabetes mellitus and attending the outpatient department (OPD) for diabetic treatment. The study protocol is approved from ministry of health Malaysia and clinical research committee (CRC). Data analysis was made using IBM SPSS Statistics, version 22 (Armok, NY).
    RESULTS: A total of 150 participants were selected to enroll in this study. Initial baseline comparison showed 'No significant difference' between the two intervention arms and control group. Findings showed that baseline dataset have no significant change among all three-arms. However last week of study showed significant (p<0.001) improvement among pharmacist intervention arm as compared to telemonitoring and control arm. Glycemic control seems well tolerated and managed among pharmacist intervention arm as compared to telemonitoring and control arm (p<0.001). The study findings also showed reduction of mean 2.72 % (HbA1c) as compare to baseline in six months. The proportion of participants experiencing hypoglycemic/hyperglycemic events was significantly lower in the pharmacist intervention group compared to telemonitoring and control arm (odds ratio: 2.1381; 95% CI: 3.0267-1.6059, p<0.001).
    CONCLUSION: The Pharmacist educational focus-home care program improves the patient knowledge, self-care practices and also significantly reduce the adverse events over study duration.
  16. Yee PT, Poh CL
    Curr Pharm Des, 2016;22(44):6694-6700.
    PMID: 27510488 DOI: 10.2174/1381612822666160720165613
    The Hand, Foot and Mouth Disease (HFMD) is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. Common HFMD symptoms are high fever (≥ 39°C), rashes, and ulcers but complications due to virulent EV-A71 may arise leading to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents. Recent studies have reported the emergence of novel antiviral agents and vaccines that utilize microRNAs (miRNAs). They belong to a class of small (19-24 nt) non coding RNA molecules. As miRNAs play a major role in the host regulatory system, there is a huge opportunity for interplay between host miRNAs and EV-A71 expressions. A total of 42 out of 64 miRNAs were up-regulated in EV-A71-infected cells. There was consistent up-regulation of miR-1246 gene expression that targeted the DLG3 gene which contributes to neurological pathogenesis. In contrast, miR-30a that targets calcium channels for membrane transportation was down-regulated. This leads to repression of EV-A71 replication. The impact of host miRNAs on immune activation, shutdown of host protein synthesis, apoptosis, signal transduction and viral replication are discussed. miRNAs have been used in the construction of live attenuated vaccines (LAV) such as the poliovirus LAV that has miRNA binding sites for let-7a or miR-124a. The miRNAbearing vaccine will not replicate in neuronal cells carrying the corresponding miRNA but could still replicate in the gastrointestinal tract and hence remains to act as immunogens. As such, miRNAs are attractive candidates to be developed as vaccines and antivirals.
  17. Reginald K, Chan Y, Plebanski M, Poh CL
    Curr Pharm Des, 2018;24(11):1157-1173.
    PMID: 28914200 DOI: 10.2174/1381612823666170913163904
    Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
  18. Vijayan V, Shalini K, Yugesvaran V, Yee TH, Balakrishnan S, Palanimuthu VR
    Curr Pharm Des, 2018;24(28):3366-3375.
    PMID: 30179118 DOI: 10.2174/1381612824666180903110301
    BACKGROUND: Triple-Negative Breast Cancer is an aggressive type of breast cancer, which is not treatable by chemotherapy drugs, due to the lack of Estrogen Receptor (ER), Progesterone Receptor (PR) expression and Human Epidermal Growth Factor Receptor 2 (HER2) on the cell surface.

    OBJECTIVE: The aim of this study was to compare the effect of paclitaxel loaded PLGA nanoparticle (PTX-NPs) on the cytotoxicity and apoptosis of the different MDA-MB type of cell lines.

    METHOD: PTX-NPs were prepared by nanoprecipitation method and characterized earlier. The cytotoxicity of PTX-NPs was evaluated by MTT and LDH assay, later apoptosis was calculated by flow cytometry analysis.

    RESULTS: The prepared NP size of 317.5 nm and zetapontial of -12.7 mV showed drug release of 89.1 % at 48 h. MDA-MB-231 type cell showed significant cytotoxicity by MTT method of 47.4 ± 1.2 % at 24 h, 34.6 ± 0.8 % at 48 h and 23.5 ± 0.5 % at 72 h and LDH method of 35.9 ± 1.5 % at 24 h, 25.4 ± 0.6 % at 48 h and 19.8 ± 2.2 % at 72 h with apoptosis of 47.3 ± 0.4 %.

    CONCLUSION: We have found that PTX-NPs showed the cytotoxic effect on all the MDA-MB cancer cell lines and showed potent anticancer activities against MDA-MB-231 cell line via induction of apoptosis.

Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links