Displaying all 15 publications

Abstract:
Sort:
  1. Shirbhate E, Patel VK, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Top Med Chem, 2022;22(22):1849-1867.
    PMID: 36082857 DOI: 10.2174/1568026622666220907114443
    BACKGROUND: The management of Alzheimer's disease is challenging due to its complexity. However, the currently approved and marketed treatments for this neurodegenerative disorder revolves around cholinesterase inhibitors, glutamate regulators, or the combination of these agents. Despite the prompt assurance of many new drugs, several agents were unsuccessful, especially in phase II or III trials, not meeting efficacy endpoints.

    OBJECTIVE: The execution of effective treatment approaches through further trials investigating a rational combination of agents is necessitude for Alzheimer's disease.

    METHODS: For this review, more than 248 relevant scientific papers were considered from a variety of databases (Scopus, Web of Science, Google Scholar, ScienceDirect, and PubMed) using the keywords Alzheimer's disease, amyloid-β, combination therapies, cholinesterase inhibitors, dementia, glutamate regulators, AD hypothesis.

    RESULT AND DISCUSSION: The researcher's intent is to either develop a disease-modifying therapeutic means for aiming in the early phases of dementia and/or optimize the available symptomatic treatments principally committed to the more advanced stages of Alzheimer's. Since Alzheimer's possesses multifactorial pathogenesis, designing a multimodal therapeutic intervention for targeting different pathological processes of dementia may appear to be the most practical method to alter the course of disease progression.

    CONCLUSION: The combination approach may even allow for providing individual agents in lower doses, with reducible costs and side effects. Numerous studies on combination therapy predicted better clinical efficacy than monotherapy. The literature review highlights the major clinical studies (both symptomatic and disease-modifying) conducted in the past decade on combination therapy to combat cognitive disorder.

  2. Shirbhate E, Singh V, Kore R, Vishwakarma S, Veerasamy R, Tiwari AK, et al.
    Curr Top Med Chem, 2024 Jan 22.
    PMID: 38258788 DOI: 10.2174/0115680266284527240118041129
    Scientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance. Cytokines play a significant role in cancer cell growth and progression, and the present article highlights their substantial contribution to mechanisms of resistance toward therapeutic drugs. Multiple clinical studies have even described the importance of specific cytokines released from cancer cells as well as stromal cells in conferring resistance. Herein, we discuss the different mechanism behind drug resistance and the crosstalk between tumor development and cytokines release and their contribution to showing resistance towards chemotherapeutics. As a part of this review, different approaches to cytokines profile have been identified and employed to successfully target new evolving mechanisms of resistance and their possible treatment options.
  3. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
  4. Ramesh M, Muthuraman A
    Curr Top Med Chem, 2021;21(32):2856-2868.
    PMID: 34809547 DOI: 10.2174/1568026621666211122161932
    Neuropathic pain occurs due to physical damage, injury, or dysfunction of neuronal fibers. The pathophysiology of neuropathic pain is too complex. Therefore, an accurate and reliable prediction of the appropriate hits/ligands for the treatment of neuropathic pain is a challenging process. However, computer-aided drug discovery approaches contributed significantly to discovering newer hits/ligands for the treatment of neuropathic pain. The computational approaches like homology modeling, induced-fit molecular docking, structure-activity relationships, metadynamics, and virtual screening were cited in the literature for the identification of potential hit molecules against neuropathic pain. These hit molecules act as inducible nitric oxide synthase inhibitors, FLAT antagonists, TRPA1 modulators, voltage-gated sodium channel binder, cannabinoid receptor-2 agonists, sigma-1 receptor antagonists, etc. Sigma-1 receptor is a distinct type of opioid receptor and several patents were obtained for sigma-1 receptor antagonists for the treatment of neuropathic pain. These molecules were found to have a profound role in the management of neuropathic pain. The present review describes the validated therapeutic targets, potential chemical scaffolds, and crucial protein-ligand interactions for the management of neuropathic pain based on the recently reported computational methodologies of the present and past decades. The study can help the researcher to discover newer drugs/drug-like molecules against neuropathic pain.
  5. Hosseini S, Oliva-Ramírez J, Vázquez-Villegas P, García AR, Muñoz-Soto RB, Aghamohammadi N, et al.
    Curr Top Med Chem, 2018 Nov 05.
    PMID: 30394209 DOI: 10.2174/1568026618666181105130000
    Current review article focuses on Dengue, which is one of the most fatal infectious illnesses and is considered to be a worldwide threat. The paper covers essential topics including an overview on neglected tropical diseases with specific emphasis on Dengue fever, mosquito's cycle of life and mechanism of infection, adaptive response, and different stages in Dengue immunopathogenesis. The current work is also dedicated to the thorough study of Dengue outbreak across the globe with narrowed study to tropical and subtropical regions. Moreover, this review article demonstrates the correlation between the climate factors and Dengue incidence. Furthermore, we present an overview on the detection strategies of Dengue including the latest developments in commercial and non-commercial platforms. Several attempts in developing effective vaccine to protect individuals from Dengue infection and the stage of clinical trails are gathered in the present work as well. Future directions including bio-control are also discussed in this review article. In an overall view, effective management of Dengue is a multidisciplinary task that requires international involvement from different backgrounds and expertise to address this global concern. This review article briefly portrays some of these connecting areas across the disciplines while many other perspectives remain uncovered.
  6. Hoo WPY, Siak PY, In LLA
    Curr Top Med Chem, 2019;19(23):2158-2175.
    PMID: 31483231 DOI: 10.2174/1568026619666190904163524
    The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
  7. Gaurav A, Agrawal N, Al-Nema M, Gautam V
    Curr Top Med Chem, 2022;22(26):2190-2206.
    PMID: 36278463 DOI: 10.2174/1568026623666221019110334
    Over the last two decades, computational technologies have played a crucial role in antiviral drug development. Whenever a virus spreads and becomes a threat to global health, it brings along the challenge of developing new therapeutics and prophylactics. Computational drug and vaccine discovery has evolved quickly over the years. Some interesting examples of computational drug discovery are anti-AIDS drugs, where HIV protease and reverse transcriptase have been targeted by agents developed using computational methods. Various computational methods that have been applied to anti-viral research include ligand-based methods that rely on known active compounds, i.e., pharmacophore modeling, machine learning or classical QSAR; structure-based methods that rely on an experimentally determined 3D structure of the targets, i.e., molecular docking and molecular dynamics and methods for the development of vaccines such as reverse vaccinology; structural vaccinology and vaccine epitope prediction. This review summarizes these approaches to battle viral diseases and underscores their importance for anti-viral research. We discuss the role of computational methods in developing small molecules and vaccines against human immunodeficiency virus, yellow fever, human papilloma virus, SARS-CoV-2, and other viruses. Various computational tools available for the abovementioned purposes have been listed and described. A discussion on applying artificial intelligence-based methods for antiviral drug discovery has also been included.
  8. Al-Nema MY, Gaurav A
    Curr Top Med Chem, 2019;19(7):555-564.
    PMID: 30931862 DOI: 10.2174/1568026619666190401113803
    BACKGROUND: Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3', 5'- cyclic adenosine monophosphate (cAMP) and/or 3', 5' cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins.

    OBJECTIVE: This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs.

    METHODS: The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE.

    RESULTS: The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function.

    CONCLUSION: Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.

  9. Al-Nema MY, Gaurav A
    Curr Top Med Chem, 2020;20(26):2404-2421.
    PMID: 32533817 DOI: 10.2174/1568026620666200613202641
    Schizophrenia is a severe mental disorder that affects more than 1% of the population worldwide. Dopamine system dysfunction and alterations in glutamatergic neurotransmission are strongly implicated in the aetiology of schizophrenia. To date, antipsychotic drugs are the only available treatment for the symptoms of schizophrenia. These medications, which act as D2-receptor antagonist, adequately address the positive symptoms of the disease, but they fail to improve the negative symptoms and cognitive impairment. In schizophrenia, cognitive impairment is a core feature of the disorder. Therefore, the treatment of cognitive impairment and the other symptoms related to schizophrenia remains a significant unmet medical need. Currently, phosphodiesterases (PDEs) are considered the best drug target for the treatment of schizophrenia since many PDE subfamilies are abundant in the brain regions that are relevant to cognition. Thus, this review aims to illustrate the mechanism of PDEs in treating the symptoms of schizophrenia and summarises the encouraging results of PDE inhibitors as anti-schizophrenic drugs in preclinical and clinical studies.
  10. Islam MA, Khandker SS, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Top Med Chem, 2017;17(12):1408-1428.
    PMID: 28049401 DOI: 10.2174/1568026617666170103163054
    Alzheimer's disease (AD), which largely affects the elderly, has become a global burden. Patients with AD have both short- and long-term memory impairments. The neuronal loss in AD occurs due to abnormally folded amyloid beta proteins and aggregation of hyperphosphorylated tau proteins in the brain. Eventually, amyloid plaques and neurofibrillary tangles are formed, which subsequently disintegrate the neuronal transport system. There are several factors which are involved in AD pathogenesis, including oxidative stress, inflammation and the presence of metal ions. The modern therapies utilized for AD treatment have many adverse effects, driving the quest for more safe and effective medications. Many dietary components, including different types of fruits, vegetables, spices, and marine products as well as a Mediterranean diet, are a good source of antioxidants and have anti-inflammatory properties, with many showing substantial potential against AD pathogenesis. In this review, we discuss the potential of these foods for treating AD and opportunities for developing disease-targeted drugs from active compounds extracted from natural dietary products.
  11. Hussain S, Ullah F, Sadiq A, Ayaz M, Shah AA, Ali Shah SA, et al.
    Curr Top Med Chem, 2019;19(30):2805-2813.
    PMID: 31702502 DOI: 10.2174/1568026619666191105103801
    BACKGROUND: Liver cancer is a devastating cancer with increasing incidence and mortality rates worldwide. Plants possess numerous therapeutic properties, therefore the search for novel, naturally occurring cytotoxic compounds is urgently needed.

    METHODS: The anticancer activity of plant extracts and isolated compounds from Anchusa arvensis (A. arvensis) were studied against the cell culture of HepG-2 (human hepatocellular carcinoma cell lines) using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. Apoptosis was investigated by performing Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study. We also used tools for computational chemistry studies of isolated compounds with the tyrosine kinase.

    RESULTS: In MTT assay, the crude extract caused a significant cytotoxic effect with IC50 of 34.14 ± 0.9 μg/ml against HepG-2 cell lines. Upon fractionation, chloroform fraction (Aa.Chm) exhibited the highest antiproliferative activity with IC50 6.55 ± 1.2 μg/ml followed by ethyl acetate (Aa.Et) fraction (IC50, 24.59 ± 0.85 μg/ml) and n-hexane (Aa.Hex) fraction (IC50 29.53 ± 1.5μg/ml). However, the aqueous (Aa.Aq) fraction did not show any anti-proliferative activity. Bioactivity-guided isolation led to the isolation of two compounds which were characterized as para-methoxycatechol (1) and decane (2) through various spectroscopic techniques. Against HepG-2 cells, compound 1 showed marked potency with IC50 6.03 ± 0.75 μg/ml followed by 2 with IC50 18.52 ± 1.9 μg/ml. DMSO was used as a negative control and doxorubicin as a reference standard (IC50 1.3 ± 0.21 μg/ml). It was observed that compounds 1-2 caused apoptotic cell death evaluated by Acridine orange -ethidium bromide staining, styox green assay and DNA interaction study, therefore both compounds were tested for molecular docking studies against tyrosine kinase to support cytotoxic activity.

    CONCLUSION: This study revealed that the plant extracts and isolated compounds possess promising antiproliferative activity against HepG-2 cell lines via apoptotic cell death.

  12. Wadhwa R, Pandey P, Gupta G, Aggarwal T, Kumar N, Mehta M, et al.
    Curr Top Med Chem, 2019;19(28):2593-2609.
    PMID: 31746290 DOI: 10.2174/1568026619666191026105308
    BACKGROUND: Candida species are the important etiologic agents for candidiasis, the most prevalent cause of opportunistic fungal infections. Candida invasion results in mucosal to systemic infections through immune dysfunction and helps in further invasion and proliferation at several sites in the host. The host defence system utilizes a wide array of the cells, proteins and chemical signals that are distributed in blood and tissues which further constitute the innate and adaptive immune system. The lack of antifungal agents and their limited therapeutic effects have led to high mortality and morbidity related to such infections.

    METHODS: The necessary information collated on this review has been gathered from various literature published from 1995 to 2019.

    RESULTS: This article sheds light on novel drug delivery approaches to target the immunological axis for several Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. rugose, C. hemulonii, etc.).

    CONCLUSION: It is clear that the novel drug delivery approaches include vaccines, adoptive transfer of primed immune cells, recombinant cytokines, therapeutic antibodies, and nanoparticles, which have immunomodulatory effects. Such advancements in targeting various underpinning mechanisms using the concept of novel drug delivery will provide a new dimension to the fungal infection clinic particularly due to Candida species with improved patient compliance and lesser side effects. This advancement in knowledge can also be extended to target various other similar microbial species and infections.

  13. Deep A, Bhatia RK, Kaur R, Kumar S, Jain UK, Singh H, et al.
    Curr Top Med Chem, 2017;17(2):238-250.
    PMID: 27237332
    Imidazo[1,2-a]pyridine is one of the most potential bicyclic 5-6 heterocyclic rings that is recognized as a "drug prejudice" scaffold due to its broad range of applications in medicinal chemistry such as anticancer, antimycobacterial, antileishmanial, anticonvulsant, antimicrobial, antiviral, antidiabetic, proton pump inhibitor, insecticidal activities. This scaffold has also been represented in various marketed preparations such as zolimidine, zolpidem, alpidem. Therefore, several attempts were made to carry out the structural modifications of this scaffold to discover and develop novel therapeutic agents. This review provides a valuable insight into the research findings of wide range of derivatives of imidazo[1,2-a]pyridine scaffold leading to promising heterocyclic compounds which could be explored further for the synthesis of new derivatives as well as construction of potential drug-like chemical libraries for biological screening in search of new therapeutic agents.
  14. Awuah WA, Kalmanovich J, Mehta A, Huang H, Abdul-Rahman T, Cheng Ng J, et al.
    Curr Top Med Chem, 2023;23(5):389-402.
    PMID: 36593538 DOI: 10.2174/1568026623666230102095836
    Glioblastoma Multiforme (GBM) is a debilitating type of brain cancer with a high mortality rate. Despite current treatment options such as surgery, radiotherapy, and the use of temozolomide and bevacizumab, it is considered incurable. Various methods, such as drug repositioning, have been used to increase the number of available treatments. Drug repositioning is the use of FDA-approved drugs to treat other diseases. This is possible because the drugs used for this purpose have polypharmacological effects. This means that these medications can bind to multiple targets, resulting in multiple mechanisms of action. Antipsychotics are one type of drug used to treat GBM. Antipsychotics are a broad class of drugs that can be further subdivided into typical and atypical classes. Typical antipsychotics include chlorpromazine, trifluoperazine, and pimozide. This class of antipsychotics was developed early on and primarily works on dopamine D2 receptors, though it can also work on others. Olanzapine and Quetiapine are examples of atypical antipsychotics, a category that was created later. These medications have a high affinity for serotonin receptors such as 5- HT2, but they can also act on dopamine and H1 receptors. Antipsychotic medications, in the case of GBM, also have other effects that can affect multiple pathways due to their polypharmacological effects. These include NF-B suppression, cyclin deregulation, and -catenin phosphorylation, among others. This review will delve deeper into the polypharmacological, the multiple effects of antipsychotics in the treatment of GBM, and an outlook for the field's future progression.
  15. Gill MSA, Saleem H, Ahemad N
    Curr Top Med Chem, 2020;20(12):1093-1104.
    PMID: 32091334 DOI: 10.2174/1568026620666200224100219
    Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links