The delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup.
The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation. The prospect of exhibiting a synergistic antitumor effect is to target a multi-pathway approach, reduce dosage, and minimize potential side effects. However, their effectiveness is limited by poor bioavailability. Nanoscale delivery systems are promising strategies for the delivery of polyphenols. Nevertheless, many of these nanomaterials are yet to be commercialized owing to their lack of versatility or manufacturing costs. Thus, developing a formulation that responds to body conditions is a great challenge and would provide a better way to orally administer polyphenols. Therefore, this study aimed to develop a dual-responsive disulfide-linked core-shell nanohybrid for oral delivery and targeted release of polyphenols in the colon. The nanohybrid had monodispersed structures with a size of 9.5 nm), surface area of > 700 m2/g, and zeta potential of - 30.71 ± 0.71 mV. The polyphenols were encapsulated into the nanohybrid in their amorphous state, with a loading capacity of 20.49%. The coating enhanced the release of polyphenols into the intestinal fluid, potentially improving their delivery to the colon. The nanohybrid demonstrated a better anticancer effect than the free polyphenols against HT29 cancer cells. This study explores the use of a dual-sensitive alginate-coated mesoporous silica nanohybrid as a carrier for the enhanced delivery of polyphenols.
Composite film dressings composed of pluronic F127 (PL)-pectin (PC) and pluronic (PL) F127-gelatin (GL) were investigated as potential drug delivery system for wound healing. Composite films were solvent cast by blending PL with PC or GL in different ratios using glycerol (2.5%) as plasticizer. Erythromycin (ER) (0.1%) was incorporated in films as model hydrophobic antibiotic. The optimized composite films were characterized for physical appearance, morphology, mechanical profile, and thermal behavior. In addition, drug release, antibacterial activity, and cytocompatibility of the films were investigated to assess their potential as drug delivery system. The composite films exhibited excellent wound dressing characters in terms of appearance, stability, and mechanical profile. Moreover, ER-loaded composite films released ER in controlled manner, exhibited antibacterial activity against Staphylococcus aureus, and were non-toxic to human skin fibroblast. These findings demonstrate that these composite films hold the potential to be formulated as antibacterial wound dressing.
Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer's Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.
Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
To investigate the use of chitosan nanoparticles (CS-TPP-NPs) as carriers for α- and β-arbutin. In this study, CS-TPP-NPs containing α- and β-arbutin were prepared via the ionic cross-linking of CS and TPP and characterized for particle size, zeta potential, and dispersity index. The entrapment efficiency and loading capacity of various β-arbutin concentrations (0.1, 0.2, 0.4, 0.5, and 0.6%) were also investigated. SEM, TEM FTIR, DSC and TGA analyses of the nanoparticles were performed to further characterize the nanoparticles. Finally, stability and release studies were undertaken to ascertain further the suitability of the nanoparticles as a carrier system for α- and β-arbutin. Data obtained clearly indicates the potential for use of CS-TPP-NPs as a carrier for the delivery of α- and β-arbutin. The size obtained for the alpha nanoparticles (α-arbutin CSNPs) ranges from 147 to 274 d.nm, with an increase in size with increasing alpha arbutin concentration. β-arbutin nanoparticles (β-arbutin CSNPs) size range was from 211.1 to 284 dn.m. PdI for all nanoparticles remained between 0.2-0.3 while the zeta potential was between 41.6-52.1 mV. The optimum encapsulation efficiency and loading capacity for 0.4% α-arbutin CSNPs were 71 and 77%, respectively. As for β-arbutin, CSNP optimum encapsulation efficiency and loading capacity for 0.4% concentration were 68 and 74%, respectively. Scanning electron microscopy for α-arbutin CSNPs showed a more spherical shape compared to β-arbutin CSNPs where rod-shaped particles were observed. However, under transmission electron microscopy, the shapes of both α- and β-arbutin CSNP nanoparticles were spherical. The crystal phase identification of the studied samples was carried out using X-ray diffraction (XRD), and the XRD of both α and β-arbutin CSNPs showed to be more crystalline in comparison to their free form. FTIR spectra showed intense characteristic peaks of chitosan appearing at 3438.3 cm-1 (-OH stretching), 2912 cm-1 (-CH stretching), represented 1598.01 cm-1 (-NH2) for both nanoparticles. Stability studies conducted for 90 days revealed that both α- and β-arbutin CSNPs were stable in solution. Finally, release studies of both α- and β-arbutin CSNPs showed a significantly higher percentage release in comparison to α- and β-arbutin in their free form. Chitosan nanoparticles demonstrate considerable promise as a carrier system for α- and β-arbutin, the use of which is anticipated to improve delivery of arbutin through the skin, in order to improve its efficacy as a whitening agent.
Glioblastoma multiforme (GBM) is the most prevalent form of brain tumor, which generally has a poor prognosis. According to consensus, recurrence of the tumor and chemotherapy resistance acquisition are the two distinguishing features of GBM originated from glioblastoma stem cells (GSCs). To eliminate these obstacles inherent in GBM chemotherapy, targeting GSCs through a smart drug delivery system has come to the front position of GBM therapeutics. In this study, B19 aptamer (Apt)-conjugated polyamidoamine (PAMAM) G4C12 dendrimer nanoparticles (NPs), called Apt-NPs, were formulated for the co-delivery of paclitaxel (PTX) and temozolomide (TMZ) to U-87 stem cells. These drugs were loaded using a double emulsification solvent evaporation method. As a result, drug-loaded Apt-NPs significantly inhibited the tumor growth of U-87 stem cells, by the initiation of apoptosis via the downregulation of autophagic and multidrug resistance (MDR) genes. Additionally, by their downregulation by qPCR of CD133, CD44, SOX2, and the canonical Wnt/β-catenin pathway, cell proliferation has substantially decreased. Altogether, the results demonstrate that this intelligent drug co-delivery system is capable of effectively transferring PTX and TMZ to U-87 stem cells and without any toxic effect on Apt-NPs alone to U-87 stem cells. Furthermore, the designed dendrimer-based pharmaceutical system along with single-stranded B19 aptamer might be utilized as a new therapeutic strategy for the treatment of U-87 stem cells drug resistance in the GBM.
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Azelaic acid (AzA) is a USFDA bioactive prescribed against acne vulgaris. It possesses delivery challenges like poor aqueous solubility, low skin-penetrability, and dose-dependent side effects, which could be overcome by its synergistic combination with tea tree oil (TTO) as a microemulsion (ME)-based hydrogel composite. AzA-TTO ME was prepared to employ pseudo-ternary phase diagram construction. The best AzA-TTO ME was of uniform size (polydispersity index 90%), and negative zeta potential (-1.42 ± 0.25% mV) values. ME hydrogel composite with optimum rheological and textural attributes showed better permeation, retention, and skin-compliant characteristics, vis-a-vis marketed formulation (Aziderm™) when evaluated in Wistar rat skin. In vitro antibacterial efficacy in bacterial strains, i.e., Staphylococcus aureus, Propionibacterium acne, and Staphylococcus epidermidis, was evaluated employing agar well plate diffusion and broth dilution assay. ME hydrogel has shown an increase in zone of inhibition by two folds and a decrease in minimum inhibitory concentration (MIC) by eightfold against P. acnes vis-a-vis AzA. Finally, ME hydrogel composite exhibited a better reduction in the papule density (93.75 ± 1.64%) in comparison to Aziderm™ 72.69 ± 4.67%) on acne as developed in rats by inducing testosterone. Thus, the developed AzA-TTO ME hydrogel composite promises an efficacious and comparatively safer drug delivery system for the topical therapy of acne vulgaris.
Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.
Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
Oral mucositis (OM) remains a debilitating side effect in patients undergoing cancer therapy. DNA damage and oxidative stress generated by radiation and/or chemotherapy activate key inflammatory pathways, ultimately resulting in the destruction of the epithelial barrier, leading to microbial colonization, and ulceration. These ulcerative lesions are often extremely painful, compromising nutrition and oral hygiene, requiring intravenous nutritional support, resulting in longer periods of hospitalization and increased cost. Ulcers often increase the risk of secondary infection, disrupting cancer therapy and patient prognosis. Despite these issues, there is no approved therapy to mitigate OM. Ultrasmall (
Atopic dermatitis (AD) is a complex, relapsing inflammatory skin disease with a considerable social and economic burden globally. AD is primarily characterized by its chronic pattern and it can have important modifications in the quality of life of the patients and caretakers. One of the fastest-growing topics in translational medicine today is the exploration of new or repurposed functional biomaterials into drug delivery therapeutic applications. This area has gained a considerable amount of research which produced many innovative drug delivery systems for inflammatory skin diseases like AD. Chitosan, a polysaccharide, has attracted attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine, and has been considered a promising candidate for AD treatment due to its antimicrobial, antioxidative, and inflammatory response modulation properties. The current pharmacological treatment for AD involves prescribing topical corticosteroid and calcineurin inhibitors. However, the adverse reactions associated with the long-term usage of these drugs such as itching, burning, or stinging sensation are also well documented. Innovative formulation strategies, including the use of micro- and nanoparticulate systems, biopolymer hydrogel composites, nanofibers, and textile fabrication are being extensively researched with an aim to produce a safe and effective delivery system for AD treatment with minimal side effects. This review outlines the recent development of various chitosan-based drug delivery systems for the treatment of AD published in the past 10 years (2012-2022). These chitosan-based delivery systems include hydrogels, films, micro-, and nanoparticulate systems as well as chitosan textile. The global patent trends on chitosan-based formulations for the AD are also discussed.
On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides "stealth" properties to nanocarrier's surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.
Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p
Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.