Displaying publications 1 - 20 of 27 in total

  1. Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P
    Drug Discov Today, 2017 11;22(11):1697-1706.
    PMID: 28683256 DOI: 10.1016/j.drudis.2017.06.008
    Global research on polyelectrolytes at a fundamental and applied level is intensifying because the advantages of sustainability are being accepted in academia and industrial research settings. During recent decades, polyelectrolytes became one of the most attractive subjects of scientific research owing to their great potential in the areas of advanced technologies. Polyelectrolytes are a type of polymer that have multitudinous ionizable functional groups. Ionized polyelectrolytes in solution can form a complex with oppositely charged polyelectrolytes - a polyelectrolyte complex (PEC). The present article provides a comprehensive review on PECs and their classification, theory and characterization, as well as a critical analysis of the current research.
  2. Khurana RK, Jain A, Jain A, Sharma T, Singh B, Kesharwani P
    Drug Discov Today, 2018 Apr;23(4):763-770.
    PMID: 29317341 DOI: 10.1016/j.drudis.2018.01.021
    Several randomized clinical trials have divulged that administration of antioxidants during chemotherapy decreases the effectiveness of treatment. Hence, the characteristic feature of this article is extensive assessment of putative benefits and potential risks of natural and synthetic antioxidant supplementation, administered with chemotherapy, based upon the available preclinical and clinical data. After analyzing mixed results, it was concluded that current FDA guidelines should be followed before supplementing antioxidants during cytotoxic treatment. Nevertheless, contradictory experimental animal models opposing human clinical trials discourage the concurrent administration of antioxidants ostensibly owing to the possibility of tumor protection and reduced survival.
  3. Soo HL, Quah SY, Sulaiman I, Sagineedu SR, Lim JCW, Stanslas J
    Drug Discov Today, 2019 09;24(9):1890-1898.
    PMID: 31154065 DOI: 10.1016/j.drudis.2019.05.017
    Andrographolide (AGP), a naturally occurring bioactive compound, has been investigated as a lead compound in cancer drug development. Its multidimensional therapeutic effects have raised interest among medicinal chemists, which has led to extensive structural modification of the compound, resulting in analogues with improved pharmacological and pharmaceutical properties. Nevertheless, the analogues with the improved properties need to be rigorously studied to identify drug-like lead compounds. We scrutinised articles published from 2012 to 2018, to objectively provide opinions on the mechanisms of action of AGP and its analogues, as well as their potential as viable anticancer drugs. Preclinical and clinical data, along with the extensive medicinal chemistry efforts, indicate the compounds are potential anticancer agents with specific value in treating recalcitrant cancers such as pancreatic and lung cancers.
  4. Mak KK, Pichika MR
    Drug Discov Today, 2019 03;24(3):773-780.
    PMID: 30472429 DOI: 10.1016/j.drudis.2018.11.014
    Artificial intelligence (AI) uses personified knowledge and learns from the solutions it produces to address not only specific but also complex problems. Remarkable improvements in computational power coupled with advancements in AI technology could be utilised to revolutionise the drug development process. At present, the pharmaceutical industry is facing challenges in sustaining their drug development programmes because of increased R&D costs and reduced efficiency. In this review, we discuss the major causes of attrition rates in new drug approvals, the possible ways that AI can improve the efficiency of the drug development process and collaboration of pharmaceutical industry giants with AI-powered drug discovery firms.
  5. Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T
    Drug Discov Today, 2021 04;26(4):902-915.
    PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017
    Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.
  6. Mishra V, Patil A, Thakur S, Kesharwani P
    Drug Discov Today, 2018 06;23(6):1219-1232.
    PMID: 29366761 DOI: 10.1016/j.drudis.2018.01.006
    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging.
  7. Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, et al.
    Drug Discov Today, 2018 Mar;23(3):460-480.
    PMID: 29107764 DOI: 10.1016/j.drudis.2017.10.020
    MicroRNAs (miRNAs) are small, noncoding RNAs regulating gene expression at the post-translational level. miRNA-based therapeutic agents are important because of the functionality of miRNAs in regulating lipid and glucose metabolism and their role in the pathogenesis of metabolic disorders such as diabetes and obesity, where dysregulation leads to disease; they are also important in angiogenesis. miRNAs additionally serve as biomarkers in the diagnosis, prognosis and risk assessment of disease and in monitoring the response to treatment. Here, we provide a brief overview of progress in miRNA-based therapeutics in the preclinical and clinical setting and highlight the novel outcomes and opportunities in the diagnosis and treatment of metabolic conditions. In addition, we present the role of miRNAs in stem cell therapy which could have great potential in regenerative medicine.
  8. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V
    Drug Discov Today, 2019 07;24(7):1405-1412.
    PMID: 31102731 DOI: 10.1016/j.drudis.2019.05.004
    Lyotropic nonlamellar liquid crystalline nanoparticles (NPs) (LCN), such as cubosomes and hexosomes, are useful tools for applications in drug delivery because of their unique structural properties. LCNs are highly versatile carriers that can be applied for use with topical, oral, and intravenous treatments. In recent years, significant research has focused on improving their preparation and characterization, including controlling drug release and enhancing the efficacy of loaded bioactive molecules. Nevertheless, the clinical translation of LCN-based carriers has been slow. In this review, we highlight recent advances and challenges in the development and application of LCN, providing examples of their topical, oral, and intravenous drug delivery applications, and discussing translational obstacles to LCN as a NP technology.
  9. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U
    Drug Discov Today, 2017 02;22(2):314-326.
    PMID: 27671487 DOI: 10.1016/j.drudis.2016.09.013
    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.
  10. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U
    Drug Discov Today, 2017 Jul 08.
    PMID: 28697371 DOI: 10.1016/j.drudis.2017.06.009
    Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.
  11. Almalki WH, Alghamdi S, Alzahrani A, Zhang W
    Drug Discov Today, 2021 03;26(3):826-835.
    PMID: 33383212 DOI: 10.1016/j.drudis.2020.12.018
    Interest is increasing in the use of nanotheranostics as diagnosis, imaging and therapeutic tools for stroke management, but movement to the clinic remains challenging.
  12. Han YL, Wang S, Zhang X, Li Y, Huang G, Qi H, et al.
    Drug Discov Today, 2014 Jun;19(6):763-73.
    PMID: 24508818 DOI: 10.1016/j.drudis.2014.01.015
    Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
  13. Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P
    Drug Discov Today, 2020 01;25(1):223-229.
    PMID: 31738877 DOI: 10.1016/j.drudis.2019.11.003
    Immune checkpoint inhibitors (ICIs) are revolutionizing the treatment of many cancers and have demonstrated their potential as 'cancer terminators'. However, ICI treatment also has constraints, such as its immune-related adverse events (irAEs) and therapeutic resistance. These drawbacks are gradually being overcome through better knowledge of the immune system, history of disease, duration of treatment, combinational drug regimes, adequate biomarkers, and effective patient response monitoring. In this review, we discuss the present ICI therapy landscape and its therapeutic outcomes for various diseases. We also highlight biomarkers related to the ICI response.
  14. Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH
    Drug Discov Today, 2021 01;26(1):94-105.
    PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020
    Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
  15. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
  16. Dubey SK, Parab S, Dabholkar N, Agrawal M, Singhvi G, Alexander A, et al.
    Drug Discov Today, 2021 04;26(4):931-950.
    PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001
    Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
  17. Yellepeddi VK, Sheshala R, McMillan H, Gujral C, Jones D, Raghu Raj Singh T
    Drug Discov Today, 2015 Jul;20(7):884-9.
    PMID: 25668579 DOI: 10.1016/j.drudis.2015.01.013
    Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
  18. Tekade RK, Tekade M, Kesharwani P
    Drug Discov Today, 2016 Jul 2.
    PMID: 27380716 DOI: 10.1016/j.drudis.2016.06.029
    The merger of nanotechnology and combination chemotherapy has shown notable promise in the therapy of resistant tumors. The latest scientific attention encompasses the engagement of anticancer drugs in combination with small interfering (si)RNAs, such as VEGF, XLAP, PGP, MRP-1, BCL-2 and cMyc, to name but a few. siRNAs have shown immense promise to knockout drug resistance genes as well as to recover the sensitivity of resistant tumors to anticancer therapy. The nanotechnology approach could also protect siRNA against RNAse degradation as well as prevent off-target effects. In this article, we discuss the approaches that have been used to deliver of siRNA in combination with chemotherapeutic drugs to treat resistant tumors. We also discuss the stipulations that must be considered in formulating a nanotechnology-assisted siRNA-drug cancer therapy.
  19. Jain A, Jain A, Parajuli P, Mishra V, Ghoshal G, Singh B, et al.
    Drug Discov Today, 2018 05;23(5):960-973.
    PMID: 29129804 DOI: 10.1016/j.drudis.2017.11.003
    Galactosylated nanocarriers have recently emerged as viable and versatile tools to deliver drugs at an optimal rate specifically to their target tissues or cells, thus maximizing their therapeutic benefits while circumventing off-target effects. The abundance of lectin receptors on cell surfaces makes the galactosylated carriers suitable for the targeted delivery of bioactives. Additionally, tethering of galactose (GAL) to various carriers, including micelles, liposomes, and nanoparticles (NPs), might also be appropriate for drug delivery. Here, we review recent advances in the development of galactosylated nanocarriers for active tumor targeting. We also provide a brief overview of the targeting mechanisms and cell receptor theory involved in the ligand-receptor-mediated delivery of drug carriers.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links