Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Ab Ghani NI, Merilä J
    Ecol Evol, 2015 Jan;5(1):7-23.
    PMID: 25628860 DOI: 10.1002/ece3.1342
    Compensatory growth (CG) may be an adaptive mechanism that helps to restore an organisms' growth trajectory and adult size from deviations caused by early life resource limitation. Yet, few studies have investigated the genetic basis of CG potential and existence of genetically based population differentiation in CG potential. We studied population differentiation, genetic basis, and costs of CG potential in nine-spined sticklebacks (Pungitius pungitius) differing in their normal growth patterns. As selection favors large body size in pond and small body size in marine populations, we expected CG to occur in the pond but not in the marine population. By manipulating feeding conditions (viz. high, low and recovery feeding treatments), we found clear evidence for CG in the pond but not in the marine population, as well as evidence for catch-up growth (i.e., size compensation without growth acceleration) in both populations. In the marine population, overcompensation occurred individuals from the recovery treatment grew eventually larger than those from the high feeding treatment. In both populations, the recovery feeding treatment reduced maturation probability. The recovery feeding treatment also reduced survival probability in the marine but not in the pond population. Analysis of interpopulation hybrids further suggested that both genetic and maternal effects contributed to the population differences in CG. Hence, apart from demonstrating intrinsic costs for recovery growth, both genetic and maternal effects were identified to be important modulators of CG responses. The results provide an evidence for adaptive differentiation in recovery growth potential.
  2. Abdul Aziz MF, Mohd Top Mohd Tah M, Shohaimi S, Ab Ghani NI, Fletcher C
    Ecol Evol, 2021 Aug;11(16):10741-10753.
    PMID: 34429877 DOI: 10.1002/ece3.7721
    A research study on morphometrics of Kalophrynus palmatissimus (commonly known as Lowland Grainy Frog) at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan was carried out from 12 November 2016 to 13 September 2017. The study was to examine data on the morphometric traits of K. palmatissimus at the two forest reserves. 15 morphometric traits of K. palmatissimus that were taken by using vernier calipers. Frog surveys were done by using 15 and 18 nocturnal 400 m transect lines with an interval distance of 20 m at AHFR and PFR, respectively. The GPS coordinates for all frog samples were recorded to ensure the precise geographic location. In addition, five climatic data were recorded. The results showed that most morphometric traits in AHFR (n = 34) and PFR (n = 31) were positively correlated with each other. On the other hand, climatic factor, which was soil pH, had a significant positive influence on most of the morphometric traits (p  .05). Later, it was found that the snout-vent length of K. palmatissimus at AHFR was slightly larger than at PFR (AHFR: μ = 37.00 mm, SE = 1.16 c.f. PFR: μ = 30.29 mm, SE = 1.07). It showed that there were variations in morphometric traits of K. palmatissimus at AHFR and PFR. From PCA analysis, morphometric traits are grouped into two components for AHFR and PFR, respectively. In AHFR, head length, eye diameter, head width, internarial distance, interorbital distance, forearm length, tibia length, foot length, and thigh length were strongly correlated, while snout length and eye-nostril distance were strongly correlated. In PFR, eye diameter, head width, internarial distance, interorbital distance, foot length, and thigh length were strongly correlated, though snout length and eye-nostril distance were strongly correlated, hence, suggested that all morphometric traits grow simultaneously in K. palmatissimus with eye-nostril distance (EN), and snout length (SL) growing almost simultaneously at AHFR (r = .91) and PFR (r = .97). There is still a lack of available information regarding the distribution and morphometric studies of K. palmatissimus in Malaysia, especially at AHFR and PFR. This study showed 15 different morphometric traits of K. palmatisssimus between AHFR and PFR, with K. palmatissimus at AHFR were found to be slightly larger than at PFR.
  3. Annavi G, Newman C, Buesching CD, Macdonald DW, Burke T, Dugdale HL
    Ecol Evol, 2014 Jun;4(12):2594-609.
    PMID: 25360289 DOI: 10.1002/ece3.1112
    HFCs (heterozygosity-fitness correlations) measure the direct relationship between an individual's genetic diversity and fitness. The effects of parental heterozygosity and the environment on HFCs are currently under-researched. We investigated these in a high-density U.K. population of European badgers (Meles meles), using a multimodel capture-mark-recapture framework and 35 microsatellite loci. We detected interannual variation in first-year, but not adult, survival probability. Adult females had higher annual survival probabilities than adult males. Cubs with more heterozygous fathers had higher first-year survival, but only in wetter summers; there was no relationship with individual or maternal heterozygosity. Moist soil conditions enhance badger food supply (earthworms), improving survival. In dryer years, higher indiscriminate mortality rates appear to mask differential heterozygosity-related survival effects. This paternal interaction was significant in the most supported model; however, the model-averaged estimate had a relative importance of 0.50 and overlapped zero slightly. First-year survival probabilities were not correlated with the inbreeding coefficient (f); however, small sample sizes limited the power to detect inbreeding depression. Correlations between individual heterozygosity and inbreeding were weak, in line with published meta-analyses showing that HFCs tend to be weak. We found support for general rather than local heterozygosity effects on first-year survival probability, and g2 indicated that our markers had power to detect inbreeding. We emphasize the importance of assessing how environmental stressors can influence the magnitude and direction of HFCs and of considering how parental genetic diversity can affect fitness-related traits, which could play an important role in the evolution of mate choice.
  4. Arai T
    Ecol Evol, 2014 Oct;4(19):3812-9.
    PMID: 25614795 DOI: 10.1002/ece3.1245
    Freshwater eels have fascinated biologists for centuries due to the spectacular long-distance migrations between the eels' freshwater habitats and their spawning areas far out in the ocean and the mysteries of their ecology. The spawning areas of Atlantic eels and Japanese eel were located far offshore in the Atlantic Ocean and the Pacific Ocean, respectively, and their reproduction took place thousands of kilometers away from their growth habitats. Phylogenetic studies have revealed that freshwater eels originated in the Indonesian region. However, remarkably little is known about the life histories of tropical freshwater eels despite the fact that tropical eels are key to understanding the nature of primitive forms of catadromous migration. This study found spawning-condition tropical freshwater eels in Lake Poso, central Sulawesi, Indonesia, with considerably high gonadosomatic index values and with histologically fully developed gonads. This study provides the first evidence that under certain conditions, freshwater eels have conditions that are immediately able to spawn even in river downstream. The results suggest that, in contrast to the migrations made by the Atlantic and Japanese eels, freshwater eels originally migrated only short distances of <100 kilometers to local spawning areas adjacent to their freshwater growth habitats. Ancestral eels most likely underwent a catadromous migration from local short-distance movements in tropical coastal waters to the long-distance migrations characteristic of present-day temperate eels, which has been well established as occurring in subtropical gyres in both hemispheres.
  5. Arellano G
    Ecol Evol, 2019 Sep;9(17):9644-9653.
    PMID: 31534682 DOI: 10.1002/ece3.5495
    Many ecological applications, like the study of mortality rates, require the estimation of proportions and confidence intervals for them. The traditional way of doing this applies the binomial distribution, which describes the outcome of a series of Bernoulli trials. This distribution assumes that observations are independent and the probability of success is the same for all the individual observations. Both assumptions are obviously false in many cases.I show how to apply bootstrap and the Poisson binomial distribution (a generalization of the binomial distribution) to the estimation of proportions. Any information at the individual level would result in better (narrower) confidence intervals around the estimation of proportions. As a case study, I applied this method to the calculation of mortality rates in a forest plot of tropical trees in Lambir Hills National Park, Malaysia.I calculated central estimates and 95% confidence intervals for species-level mortality rates for 1,007 tree species. I used a very simple model of spatial dependence in survival to estimate individual-level risk of mortality. The results obtained by accounting for heterogeneity in individual-level risk of mortality were comparable to those obtained with the binomial distribution in terms of central estimates, but the precision increased in virtually all cases, with an average reduction in the width of the confidence interval of ~20%.Spatial information allows the estimation of individual-level probabilities of survival, and this increases the precision in the estimates of mortality rates. The general method described here, with modifications, could be applied to reduce uncertainty in the estimation of proportions related to any spatially structured phenomenon with two possible outcomes. More sophisticated approaches can yield better estimates of individual-level mortality and thus narrower confidence intervals.
  6. Avin FA, Subha B, Tan YS, Braukmann TWA, Vikineswary S, Hebert PDN
    Ecol Evol, 2017 09;7(17):6972-6980.
    PMID: 28904776 DOI: 10.1002/ece3.3049
    DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.
  7. Axelsson EP, Abin JV, T Lardizabal ML, Ilstedt U, Grady KC
    Ecol Evol, 2022 May;12(5):e8855.
    PMID: 35509611 DOI: 10.1002/ece3.8855
    While reforestation is gaining momentum to moderate climate change via carbon sequestration, there is also an opportunity to use tree planting to confront declining global biodiversity. Where tree species vary in support of diversity, selecting appropriate species for planting could increase conservation effectiveness. We used a common garden experiment in Borneo using 24 native tree species to examine how variation among tree species in their support of beetle diversity is predicted by plant traits associated with "acquisitive" and "conservative" resource acquisition strategies. We evaluate three hypotheses: (1) beetle communities show fidelity to host identity as indicated by variation in abundance and diversity among tree species, (2) the leaf economic spectrum partially explains this variation as shown by beetle preferences for plant species that are predicted by plant traits, and (3) a small number of selected tree species can capture higher beetle species richness than a random tree species community. We found high variation among tree species in supporting three highly intercorrelated metrics of beetle communities: abundance, richness, and Shannon diversity. Variation in support of beetle communities was predicted by plant traits and varied by plant functional groups; within the dipterocarp family, high beetle diversity was predicted by conservative traits such as high wood density and slow growth, and in non-dipterocarps by the acquisitive traits of high foliar K and rapid growth. Using species accumulation curves and extrapolation to twice the original sample size, we show that 48 tree species were not enough to reach asymptote levels of beetle richness. Nevertheless, species accumulation curves of the six tree species with the highest richness had steeper slopes and supported 33% higher richness than a random community of tree species. Reforestation projects concerned about conservation can benefit by identifying tree species with a disproportional capacity to support biodiversity based on plant traits.
  8. Aziz SA, Clements GR, McConkey KR, Sritongchuay T, Pathil S, Abu Yazid MNH, et al.
    Ecol Evol, 2017 Nov;7(21):8670-8684.
    PMID: 29152168 DOI: 10.1002/ece3.3213
    Fruit bats provide valuable pollination services to humans through a unique coevolutionary relationship with chiropterophilous plants. However, chiropterophily in the Old World and the pollination roles of large bats, such as flying foxes (Pteropus spp., Acerodon spp., Desmalopex spp.), are still poorly understood and require further elucidation. Efforts to protect these bats have been hampered by a lack of basic quantitative information on their role as ecosystem service providers. Here, we investigate the role of the locally endangered island flying fox Pteropus hypomelanus in the pollination ecology of durian (Durio zibethinus), an economically important crop in Southeast Asia. On Tioman Island, Peninsular Malaysia, we deployed 19 stations of paired infrared camera and video traps across varying heights at four individual flowering trees in a durian orchard. We detected at least nine species of animal visitors, but only bats had mutualistic interactions with durian flowers. There was a clear vertical stratification in the feeding niches of flying foxes and nectar bats, with flying foxes feeding at greater heights in the trees. Flying foxes had a positive effect on mature fruit set and therefore serve as important pollinators for durian trees. As such, semi-wild durian trees-particularly tall ones-may be dependent on flying foxes for enhancing reproductive success. Our study is the first to quantify the role of flying foxes in durian pollination, demonstrating that these giant fruit bats may have far more important ecological, evolutionary, and economic roles than previously thought. This has important implications and can aid efforts to promote flying fox conservation, especially in Southeast Asian countries.
  9. Baltzer JL, Davies SJ
    Ecol Evol, 2012 Nov;2(11):2682-94.
    PMID: 23170205 DOI: 10.1002/ece3.383
    Drought and pests are primary abiotic and biotic factors proposed as selective filters acting on species distributions along rainfall gradients in tropical forests and may contribute importantly to species distributional limits, performance, and diversity gradients. Recent research demonstrates linkages between species distributions along rainfall gradients and physiological drought tolerance; corresponding experimental examinations of the contribution of pest pressure to distributional limits and potential interactions between drought and herbivory are limited. This study aims to quantitate differential performance and herbivory as a function of species range limits across a climatic and floristic transition in Southeast Asia. Khao Chong Botanical Garden, Thailand and Pasoh Forest Reserve, Malaysia straddle the Kangar-Pattani Line. A reciprocal transplantation across a seasonality gradient was established using two groups of species ("widespread" taxa whose distributions include seasonally dry forests and "aseasonal" taxa whose distributions are limited to aseasonal forests). Growth, biomass allocation, survival, and herbivory were monitored for 19 months. Systematic differences in performance were a function of species distribution in relation to rainfall seasonality. In aseasonal Pasoh, aseasonal species had both greater growth and survivorship than widespread species. These differences were not a function of differential herbivory as widespread and aseasonal species experienced similar damage in the aseasonal forest. In seasonally dry Khao Chong, widespread species showed higher survivorship than aseasonal species, but these differences were only apparent during drought. We link this differential performance to physiological mechanisms as well as differential tolerance of biotic pressure during drought stress. Systematic decreases in seedling survival in aseasonal taxa during drought corresponded with previously documented physiological differences and may be exacerbated by herbivore damage. These results have important implications for tropical diversity and community composition in light of predicted increases in the frequency and severity of drought in hyperdiverse tropical forests.
  10. Bechteler J, Schäfer-Verwimp A, Lee GE, Feldberg K, Pérez-Escobar OA, Pócs T, et al.
    Ecol Evol, 2017 01;7(2):638-653.
    PMID: 28116059 DOI: 10.1002/ece3.2656
    The evolutionary history and classification of epiphyllous cryptogams are still poorly known. Leptolejeunea is a largely epiphyllous pantropical liverwort genus with about 25 species characterized by deeply bilobed underleaves, elliptic to narrowly obovate leaf lobes, the presence of ocelli, and vegetative reproduction by cladia. Sequences of three chloroplast regions (rbcL, trnL-F, psbA) and the nuclear ribosomal ITS region were obtained for 66 accessions of Leptolejeunea and six outgroup species to explore the phylogeny, divergence times, and ancestral areas of this genus. The phylogeny was estimated using maximum-likelihood and Bayesian inference approaches, and divergence times were estimated with a Bayesian relaxed clock method. Leptolejeunea likely originated in Asia or the Neotropics within a time interval from the Early Eocene to the Late Cretaceous (67.9 Ma, 95% highest posterior density [HPD]: 47.9-93.7). Diversification of the crown group initiated in the Eocene or early Oligocene (38.4 Ma, 95% HPD: 27.2-52.6). Most species clades were established in the Miocene. Leptolejeunea epiphylla and L. schiffneri originated in Asia and colonized African islands during the Plio-Pleistocene. Accessions of supposedly pantropical species are placed in different main clades. Several monophyletic morphospecies exhibit considerable sequence variation related to a geographical pattern. The clear geographic structure of the Leptolejeunea crown group points to evolutionary processes including rare long-distance dispersal and subsequent speciation. Leptolejeunea may have benefitted from the large-scale distribution of humid tropical angiosperm forests in the Eocene.
  11. Both S, Elias DMO, Kritzler UH, Ostle NJ, Johnson D
    Ecol Evol, 2017 Nov;7(22):9307-9318.
    PMID: 29187970 DOI: 10.1002/ece3.3460
    In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.
  12. Cannon PG, O'Brien MJ, Yusah KM, Edwards DP, Freckleton RP
    Ecol Evol, 2020 Dec;10(23):13154-13164.
    PMID: 33304525 DOI: 10.1002/ece3.6906
    Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density-dependent mortality of conspecific seedlings (C-NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper-diversity in many tropical forests. A key question is whether fungal pathogen-mediated C-NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C-NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species-rich forests of South East Asia. We demonstrate species-specific responses of seedlings to fungicide and density treatments, generating weak negative density-dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen-Connell mechanisms structure the plant communities of this globally important forest type.
  13. Denan N, Wan Zaki WM, Norhisham AR, Sanusi R, Nasir DM, Nobilly F, et al.
    Ecol Evol, 2020 Jan;10(2):654-661.
    PMID: 32015833 DOI: 10.1002/ece3.5856
    In human-modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land-use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape-scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land-use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land-use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land-use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.
  14. Doorenweerd C, Sievert S, Rossi W, Rubinoff D
    Ecol Evol, 2020 Aug;10(16):8871-8879.
    PMID: 32884663 DOI: 10.1002/ece3.6585
    Understanding the factors that determine the realized and potential distribution of a species requires knowledge of abiotic, physiological, limitations as well as ecological interactions. Fungi of the order Laboulbeniales specialize on arthropods and are typically thought to be highly specialized on a single species or closely related group of species. Because infections are almost exclusively transmitted through direct contact between the hosts, the host ecology, to a large extent, determines the distribution and occurrence of the fungus. We examined ~20,000 fruit flies (Diptera: Dacinae) collected in Malaysia, Sulawesi, Australia, and the Solomon Islands between 2017 and 2019 for fungal infections and found 197 infected flies across eight different Bactrocera species. Morphology and 1,363 bps of small subunit (18S) DNA sequences both support that the infections are from a single polyphagous fungal species Stigmatomyces dacinus-a known ectoparasite of these fruit flies. This leads to the question: why is S. dacinus rare, when its hosts are widespread and abundant? In addition, the hosts are all Bactrocera, a genus with ~480 species, but 37 Bactrocera species found sympatric with the hosts were never infected. Host-selection does not appear to be phylogenetically correlated. These results suggest a hidden complexity in how different, but closely related, host species vary in their susceptibility, which somehow limits the abundance and dispersal capability of the fungus.
  15. Duong TY, Nguyen NT, Tran DD, Le TH, Nor SAM
    Ecol Evol, 2023 Feb;13(2):e9845.
    PMID: 36820247 DOI: 10.1002/ece3.9845
    Population genetic structure of migratory fishes can reflect ecological and evolutionary processes. Pangasius krempfi is a critically important anadromous catfish in the Mekong River, and its migration pathways and genetic structure have attracted much interest. To investigate, we quantified the genetic diversity of this species using the control region (D-loop) and Cytochrome b (Cytb) of the mitochondrial genome. Fish were sampled (n = 91) along the Mekong tributaries from upstream to estuaries and coastal areas in the Mekong Delta and compared to three samples from Pakse (Laos). The D-loop haplotype (0.941 ± 0.014) and nucleotide diversity (0.0083 ± 0.0005) were high in all populations, but that of Cytb was low (0.331 ± 0.059 and 0.00063 ± 0.00011, respectively). No genetic difference was detected between populations, indicating strong gene flow and confirming a long migration distance for this species. Pangasius krempfi was not genetically structured according to geographical populations but was delineated into three haplogroups, suggesting multiple genetic lineages. The presence of haplogroups in each sampling location implies that migration downstream is random but parallel when the fish enter two river tributaries bifurcating from the main Mekong River. Individuals can also migrate along the coast, far from the estuaries, suggesting a longer migration path than previously reported, which is crucial for maintaining diverse genetic origin and migration pathways for P. krempfi.
  16. Frias L, Stark DJ, Salgado Lynn M, Nathan S, Goossens B, Okamoto M, et al.
    Ecol Evol, 2019 Apr;9(7):3937-3945.
    PMID: 31015978 DOI: 10.1002/ece3.5022
    Strongyles are commonly reported parasites in studies of primate parasite biodiversity. Among them, nodule worm species are often overlooked as a serious concern despite having been observed to cause serious disease in nonhuman primates and humans. In this study, we investigated whether strongyles found in Bornean primates are the nodule worm Oesophagostomum spp., and to what extent these parasites are shared among members of the community. To test this, we propose two hypotheses that use the parasite genetic structure to infer transmission processes within the community. In the first scenario, the absence of parasite genetic substructuring would reflect high levels of parasite transmission among primate hosts, as primates' home ranges overlap in the study area. In the second scenario, the presence of parasite substructuring would suggest cryptic diversity within the parasite genus and the existence of phylogenetic barriers to cross-species transmission. By using molecular markers, we identify strongyles infecting this primate community as O. aculeatum, the only species of nodule worm currently known to infect Asian nonhuman primates. Furthermore, the little to no genetic substructuring supports a scenario with no phylogenetic barriers to transmission and where host movements across the landscape would enable gene flow between host populations. This work shows that the parasite's high adaptability could act as a buffer against local parasite extinctions. Surveys targeting human populations living in close proximity to nonhuman primates could help clarify whether this species of nodule worm presents the zoonotic potential found in the other two species infecting African nonhuman primates.
  17. Gray CL, Slade EM, Mann DJ, Lewis OT
    Ecol Evol, 2014 Apr;4(7):1049-60.
    PMID: 24772282 DOI: 10.1002/ece3.1003
    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity-ecosystem function relationships and how the results of such studies are affected by methodological choices.
  18. Grismer LL, Wood PL, Le MD, Quah ESH, Grismer JL
    Ecol Evol, 2020 Dec;10(24):13717-13730.
    PMID: 33391675 DOI: 10.1002/ece3.6961
    Understanding the processes that underpin adaptive evolutionary shifts within major taxonomic groups has long been a research directive among many evolutionary biologists. Such phenomena are best studied in large monophyletic groups that occupy a broad range of habitats where repeated exposure to novel ecological opportunities has happened independently over time in different lineages. The gekkonid genus Cyrtodactylus is just such a lineage with approximately 300 species that range from South Asia to Melanesia and occupy a vast array of habitats. Ancestral state reconstructions using a stochastic character mapping analysis of nine different habitat preferences were employed across a phylogeny composed of 76% of the known species of Cyrtodactylus. This was done in order to ascertain which habitat preference is the ancestral condition and from that condition, the transition frequency to more derived habitat preferences. The results indicate that a general habitat preference is the ancestral condition for Cyrtodactylus and the frequency of transitioning from a general habitat preference to anything more specialized occurs approximately four times more often than the reverse. Species showing extreme morphological and/or ecological specializations generally do not give rise to species bearing other habitat preferences. The evolution of different habitat preferences is generally restricted to clades that tend to occur in specific geographic regions. The largest radiations in the genus occur in rocky habitats (granite and karst), indicating that the transition from a general habitat preference to a granite or karst-dwelling life style may be ecologically uncomplicated. Two large, unrelated clades of karst-associated species are centered in northern Indochina and the largest clade of granite-associated species occurs on the Thai-Malay Peninsula. Smaller, independent radiations of clades bearing other habitat preferences occur throughout the tree and across the broad distribution of the genus. With the exception of a general habitat preference, the data show that karst-associated species far out-number all others (29.6% vs. 0.4%-10.2%, respectively) and the common reference to karstic regions as "imperiled arcs of biodiversity" is not only misleading but potentially dangerous. Karstic regions are not simply refugia harboring the remnants of local biodiversity but are foci of speciation that continue to generate the most speciose, independent, radiations across the genus. Unfortunately, karstic landscapes are some of the most imperiled and least protected habitats on the planet and these data continue to underscore the urgent need for their conservation.
  19. Guerrero-Sanchez S, Majewski K, Orozco-terWengel P, Saimin S, Goossens B
    Ecol Evol, 2022 Jan;12(1):e8531.
    PMID: 35127037 DOI: 10.1002/ece3.8531
    The Asian water monitor lizard, Varanus salvator, is one of the largest predators in Southeast Asia which persists in human-dominated landscapes and, as such, is a suitable model to understand the behavioral plasticity of generalists in anthropogenic landscapes. We used Local Convex Hull with adaptive algorithm to estimate the home range size of 14 GPS-tagged individuals, followed by a MAXENT approach and community prey composition to understand the habitat preferences within the landscape. We estimated larger home ranges in forest than in oil palm plantations, as well as a larger diversity and abundance of mammals. Core home ranges were always linked to water bodies. However, the use of underproductive oil palm, freshwater swamp forest, and degraded forest by monitor lizards were higher than other kind of vegetation. This suitable habitat is proportionally larger in forest (73.7%) than in oil palm plantations (39.6%). Generalized estimation equation models showed that, while full home range size was negatively associated with the abundance of mammals, core areas depicted a positive association with mammal abundance, as well as with the proportion of suitable habitat within the home range. Besides having smaller home ranges in oil palm plantations, our findings suggest that limited suitable habitat availability forces the Asian water monitor lizard's population to establish only one or very few core areas. Contrastingly, under the protection of forest, they have more core areas, widely dispersed within larger home ranges. We conclude that regardless the plasticity of the species, human-dominated landscapes are altering natural patterns of home range establishment in the monitor lizard's population, creating a potential ecological trap where conditions may not remain favorable for them in the long run. A deeper understanding of the ecological implications on the species and the prey community is advisable.
  20. Hardenstine RS, He S, Cochran JEM, Braun CD, Cagua EF, Pierce SJ, et al.
    Ecol Evol, 2022 Jan;12(1):e8492.
    PMID: 35127024 DOI: 10.1002/ece3.8492
    The whale shark Rhincodon typus is found throughout the world's tropical and warm-temperate ocean basins. Despite their broad physical distribution, research on the species has been concentrated at a few aggregation sites. Comparing DNA sequences from sharks at different sites can provide a demographically neutral understanding of the whale shark's global ecology. Here, we created genetic profiles for 84 whale sharks from the Saudi Arabian Red Sea and 72 individuals from the coast of Tanzania using a combination of microsatellite and mitochondrial sequences. These two sites, separated by approximately 4500 km (shortest over-water distance), exhibit markedly different population demographics and behavioral ecologies. Eleven microsatellite DNA markers revealed that the two aggregation sites have similar levels of allelic richness and appear to be derived from the same source population. We sequenced the mitochondrial control region to produce multiple global haplotype networks (based on different alignment methodologies) that were broadly similar to each other in terms of population structure but suggested different demographic histories. Data from both microsatellite and mitochondrial markers demonstrated the stability of genetic diversity within the Saudi Arabian aggregation site throughout the sampling period. These results contrast previously measured declines in diversity at Ningaloo Reef, Western Australia. Mapping the geographic distribution of whale shark lineages provides insight into the species' connectivity and can be used to direct management efforts at both local and global scales. Similarly, understanding historical fluctuations in whale shark abundance provides a baseline by which to assess current trends. Continued development of new sequencing methods and the incorporation of genomic data could lead to considerable advances in the scientific understanding of whale shark population ecology and corresponding improvements to conservation policy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links