Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Ashraf MA, Khan AM, Ahmad M, Akib S, Balkhair KS, Bakar NK
    Environ Geochem Health, 2014 12;36(6):1165-90.
    PMID: 24804829 DOI: 10.1007/s10653-014-9620-9
    Radionuclide contamination in terrestrial ecosystems has reached a dangerous level. The major artificial radionuclide present in the environment is (137)Cs, which is released as a result of weapon production related to atomic projects, accidental explosions of nuclear power plants and other sources, such as reactors, evaporation ponds, liquid storage tanks, and burial grounds. The release of potentially hazardous radionuclides (radiocesium) in recent years has provided the opportunity to conduct multidisciplinary studies on their fate and transport. Radiocesium's high fission yield and ease of detection made it a prime candidate for early radio-ecological investigations. The facility setting provides a diverse background for the improved understanding of various factors that contribute toward the fate and transfer of radionuclides in the terrestrial ecosystem. In this review, we summarize the significant environmental radiocesium transfer factors to determine the damaging effects of radiocesium on terrestrial ecosystem. It has been found that (137)Cs can trace the transport of other radionuclides that have a high affinity for binding to soil particles (silts and clays). Possible remedial methods are also discussed for contaminated terrestrial systems. This review will serve as a guideline for future studies of the fate and transport of (137)Cs in terrestrial environments in the wake of the Fukushima Nuclear Power Plant disaster in 2011.
  2. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
  3. Phan K, Kim KW, Huoy L, Phan S, Se S, Capon AG, et al.
    Environ Geochem Health, 2016 Jun;38(3):763-72.
    PMID: 26298061 DOI: 10.1007/s10653-015-9759-z
    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.
  4. Keshavarzifard M, Zakaria MP, Hwai TS
    Environ Geochem Health, 2017 Jun;39(3):591-610.
    PMID: 27216263 DOI: 10.1007/s10653-016-9835-z
    The bioaccumulation and bioavailability of polycyclic aromatic hydrocarbons (PAHs) were characterized in sediment and Paphia undulata (short-neck clam) from six mudflat areas in the west coasts of Peninsular Malaysia. The concentrations of total PAHs varied from 357.1 to 6257.1 and 179.9 ± 7.6 to 1657.5 ± 53.9 ng g -1 dry weight in sediment and short-neck clam samples, respectively. PAHs can be classified as moderate to very high level of pollution in sediments and moderate to high level of pollution in short-neck clams. The diagnostic ratios of individual PAHs and principal component analysis indicate both petrogenic and pyrogenic sources with significant dominance of pyrogenic source. The first PAHs biota-sediment accumulation factors and relative biota-sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. Evaluation of PAH levels in sediments and short-neck clams indicates that short-neck clam could be introduced as a good biomonitor in mudflats. The results also demonstrated that under environmental conditions, the sedimentary load of hydrocarbons appears to be one of the factors controlling their bioavailability to biota.
  5. Thivya C, Chidambaram S, Keesari T, Prasanna MV, Thilagavathi R, Adithya VS, et al.
    Environ Geochem Health, 2016 Apr;38(2):497-509.
    PMID: 26104429 DOI: 10.1007/s10653-015-9735-7
    Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l(-1)) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3)(2)(2-)] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.
  6. Lee S, Ko IW, Yoon IH, Kim DW, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):469-480.
    PMID: 29574658 DOI: 10.1007/s10653-018-0099-7
    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
  7. Lee S, Roh Y, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):71-79.
    PMID: 29761243 DOI: 10.1007/s10653-018-0121-0
    Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
  8. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
  9. Ahmed MF, Mokhtar MB, Alam L
    Environ Geochem Health, 2021 Feb;43(2):897-914.
    PMID: 32372251 DOI: 10.1007/s10653-020-00571-w
    The prolonged persistence of toxic arsenic (As) in environment is due to its non-biodegradable characteristic. Meanwhile, several studies have reported higher concentrations of As in Langat River. However, it is the first study in Langat River Basin, Malaysia, that As concentrations in drinking water supply chain were determined simultaneously to predict the health risks of As ingestion. Water samples collected in 2015 from the four stages of drinking water supply chain were analysed for As concentration by inductively coupled plasma mass spectrometry. Determined As concentrations along with the time series data (2004-2015) were significantly within the maximum limit 0.01 mg/L of drinking water quality standard set by World Health Organization. The predicted As concentration by auto-regression moving average was 3.45E-03 mg/L in 2020 at 95% level based on time series data including climatic control variables. Long-term As ingestion via household filtration water at Langat Basin showed no potential lifetime cancer risk (LCR) 9.7E-06 (t = 6.68; p = 3.37E-08) as well as non-carcinogenic hazard quotient (HQ) 4.8E-02 (t = 6.68; p = 3.37E-08) risk at 95% level. However, the changing landscape, ex-mining ponds and extensive use of pesticides for palm oil plantation at Langat Basin are considered as the major sources of increased As concentration in Langat River. Therefore, a two-layer water filtration system at Langat Basin should be introduced to accelerate the achievement of sustainable development goal of getting safe drinking water supply.
  10. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
  11. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
  12. Alam L, Rahman LF, Ahmed MF, Bari MA, Masud MM, Mokhtar MB
    Environ Geochem Health, 2021 May;43(5):2049-2063.
    PMID: 33389458 DOI: 10.1007/s10653-020-00783-0
    Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.
  13. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
  14. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
  15. Ko MS, Nguyen TH, Kim YG, Linh BM, Chanpiwat P, Hoang HNT, et al.
    Environ Geochem Health, 2020 Dec;42(12):4193-4201.
    PMID: 32613478 DOI: 10.1007/s10653-020-00631-1
    This study investigated the contamination levels and sources of As and Cd vicinity area from Nui Phao mine that is one of the largest tungsten (W) open pit mines in the world. Soil and plant samples were collected from the study area to identify the concentrations of As and Cd using aqua-regia or HNO3 digestion. According to the Vietnamese agricultural soil criteria, all soil samples were contaminated with As and Cd. The distribution of As concentration is related to the distance from the Nui Phao mine. The higher As concentrations were measured in the area close to the mine. However, the Cd distribution in the soil showed a different pattern from As. Enrichment factor and Geoaccumulation Index (Igeo) indicated that As in the soil is derived from the mining activities, while Cd could have other geogenic or anthropogenic sources. The ranges of As and Cd concentration in polished rice grains in the Nui Phao mine area exceeded the CODEX criteria (0.2 mg/kg), which indicated extreme contamination. The arsenic concentration between soil and plant samples was determined to be a positive correlation, while the Cd concentration showed a negative correlation, implying that As and Cd have different geochemical behavior based on their sources.
  16. Nasir HM, Aris AZ, Abdullah LC, Ismail I
    PMID: 34129136 DOI: 10.1007/s10653-021-00999-8
    This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p  T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.
  17. Pongpiachan S
    PMID: 34287730 DOI: 10.1007/s10653-021-01039-1
    Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links