Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Alkhadher SAA, Sidek LM, Zakaria MP, A Al-Garadi M, Suratman S
    Environ Geochem Health, 2024 Mar 15;46(4):140.
    PMID: 38488953 DOI: 10.1007/s10653-024-01916-5
    Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p 
  2. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
  3. Shyamalagowri S, Bhavithra HA, Akila N, Jeyaraj SSG, Aravind J, Kamaraj M, et al.
    Environ Geochem Health, 2024 Mar 07;46(3):108.
    PMID: 38453774 DOI: 10.1007/s10653-024-01915-6
    Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.
  4. Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, et al.
    Environ Geochem Health, 2024 Feb 17;46(3):92.
    PMID: 38367085 DOI: 10.1007/s10653-024-01871-1
    A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
  5. Magam SM, Masood N, Alkhadher SAA, Alanazi TYA, Zakaria MP, Sidek LM, et al.
    Environ Geochem Health, 2024 Jan 16;46(2):38.
    PMID: 38227164 DOI: 10.1007/s10653-023-01828-w
    The seasonal variation of petroleum pollution including n-alkanes in surface sediments of the Selangor River in Malaysia during all four climatic seasons was investigated using GC-MS. The concentrations of n-alkanes in the sediment samples did not significantly correlate with TOC (r = 0.34, p > 0.05). The concentrations of the 29 n-alkanes in the Selangor River ranged from 967 to 3711 µg g-1 dw, with higher concentrations detected during the dry season. The overall mean per cent of grain-sized particles in the Selangor River was 85.9 ± 2.85% sand, 13.5 ± 2.8% clay, and 0.59 ± 0.34% gravel, respectively. n-alkanes are derived from a variety of sources, including fresh oil, terrestrial plants, and heavy/degraded oil in estuaries. The results of this study highlight concerns and serve as a warning that hydrocarbon contamination is affecting human health. As a result, constant monitoring and assessment of aliphatic hydrocarbons in coastal and riverine environments are needed.
  6. Shamsuddin AS, Syed Ismail SN, Othman NMI, Zakaria NH, Abd Manan TS, Ibrahim MA, et al.
    Environ Geochem Health, 2023 Nov;45(11):7741-7757.
    PMID: 37428425 DOI: 10.1007/s10653-023-01671-z
    Excessive nitrate intake via ingestion pathway and dermal absorption exposures has adverse health impacts on human health. This study evaluated groundwater (GW) nitrate concentrations and health risks which focused on ingestion and dermal exposures to residents in Bachok District, Kelantan, Malaysia. Three hundred (300) samples of private wells were collected and it is found that the nitrate concentrations ranging between 0.11 and 64.01 mg/L NO3-N with a mean value of 10.45 ± 12.67 mg/L NO3-N. The possible health hazards of nitrate by ingestion and dermal contact were assessed using USEPA human health risk assessment model for adult males and females. It is observed that the mean Hazard Quotient (HQ) values of adult males and females were 0.305 ± 0.364 and 0.261 ± 0.330, respectively. About 7.3% (n = 10) and 4.9% (n = 8) of adult males and females had HQ values more than 1, respectively. It was also observed that the mean of HQderm was lesser than HQoral for males and females. The spatial distribution of HQ by interpolation method showed high nitrate concentrations (> 10 mg/L NO3-N) were distributed from the centre to the southern part of the study location, which identified as an agricultural area, indicating the used of nitrogenous fertilizers as the main source of GW nitrate contamination in this area. The findings of this study are valuable for establishing private well water protection measures to stop further deterioration of GW quality caused by nitrate.
  7. Kumar A, Kumari S, Mustapha KA, Chakladar S, Chakravarty S
    Environ Geochem Health, 2023 Oct;45(10):6967-6983.
    PMID: 36626075 DOI: 10.1007/s10653-023-01475-1
    The borehole coal samples of Dhulia North Block from the Rajmahal Basin, Eastern India, were systematically analyzed based on the chemical composition and concentration of major and trace elements (including rare earth elements, REEs) to assess the distribution of REEs and their environmental implications with utilization potential. The Dhulia North Block coals are characterized by the predominant major oxides of SiO2, Al2O3, and Fe2O3, accounting for 94% of the total ash composition, indicating the presence of quartz, clay-rich minerals, and pyrite. Compared with the average world coal ash, the total REE content in the analyzed samples ranged from 341.0 to 810.4 ppm, which is substantially higher. Hot humid climate conditions with intermediate igneous source rocks of the basin were demonstrated by the major oxide ratios (Al2O3/TiO2 < 20) and plots of TiO2 with Al2O3 and Zr. The redox-sensitive elements such as V, Ni, Cr, and Co found in the Dhulia North Block coal indicate that an oxic sedimentary environment existed in the basin when coal was formed. The low sulfur content (1% in most samples) indicates freshwater conditions in the basin at the time of organic matter deposition. The outlook coefficient (Coutl) varies between 0.7 and 1.6, indicating that the Dhulia North Block coals are a prospective source of REEs. The Dhulia North Block coals are characterized by low H/C and O/C atomic ratios ranging from 0.56 to 0.90 and 0.10 to 0.22, respectively, and contain type-III kerogens, indicating gas-prone source rock. Further, the basic-to-acid oxide ratio suggested that Dhulia North Block coals were suitable for utilization during combustion processes.
  8. Mohd Nizam SN, Haji Baharudin NS, Ahmad H
    Environ Geochem Health, 2023 Aug;45(8):5557-5577.
    PMID: 37380923 DOI: 10.1007/s10653-023-01668-8
    Pesticides are widely employed in rice crops since the ecosystem and surroundings of paddy promote insects, weeds, and fungal and bacterial pathogens. Each commonly utilised pesticide possesses different uses. For instance, fungicides control fungal issues, herbicides curb weed growth, and insecticides destroy and repel insects. Although several ways to categorise them exist, pesticides are typically classified according to their chemical compositions. Rice production remains one of the most dominant crops grown in most Southeast Asian countries as it is a staple food. Nonetheless, the crop is highly dependent on pesticides, leading to growing concerns over the potential adverse effects of pesticides on the environment and human health. Despite the availability of numerous studies on the subject, a comprehensive understanding of the specific effects of pesticides on paddy fields in Southeast Asia is still lacking. Consequently, reviewing existing knowledge is necessary for synthesising and identifying research gaps to better inform policymakers, farmers, and other stakeholders in the agricultural sector. The objectives of the present review paper were to review the interactions between pesticides and the environment by understanding the physical and chemical properties of the chemicals, compare pesticide transportation modes in air, water, and soil and how they affect the environment, and evaluate and discuss the effects of pesticides on non-targeted organisms. This study assessed pesticide innovation reported between 1945 and 2021 for a better understanding of the utilisation of the chemicals over time. The pesticides assessed in this study were classified based on their chemical compounds, such as organochlorines, organophosphates, carbamates, and pyrethroid. This review could provide a comprehensive understanding of the interactions between pesticides and the environment and their impacts on non-targeted organisms.
  9. Molahid VLM, Kusin FM, Syed Hasan SNM
    Environ Geochem Health, 2023 Jul;45(7):4439-4460.
    PMID: 36811700 DOI: 10.1007/s10653-023-01513-y
    Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
  10. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Arabi AS, Jabbo JN
    Environ Geochem Health, 2023 Jun;45(6):3891-3906.
    PMID: 36609946 DOI: 10.1007/s10653-022-01468-6
    Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.
  11. Ong MC, Yong JC, Shaari H, Joseph B, Shazili NAM, Pradit S, et al.
    Environ Geochem Health, 2023 Jun;45(6):3777-3787.
    PMID: 36574138 DOI: 10.1007/s10653-022-01456-w
    Brunei Bay is a unique ecosystem which offers a vast biodiversity. This study was carried out to define the source of metals in the surface sediment of Brunei Bay to ensure the bay's health. The secondary data were analysed using chemometrics analysis to verify the possible factors that influence metals distribution in Brunei Bay sediment. Samples were collected several times during 2013 to 2014 using Ponar grab at 16 stations within the bay. Samples were then dried, pre-treated, digested and analysed using Inductively Coupled Plasma Mass Spectrometry (ICPMS) in the laboratory. Overall, the mean concentration of metal, sediment pH and clay fraction were significantly changed during different sampling periods, as the changes were presumed affected by seasonal changes. The Pearson correlation has pointed that metals were dominantly derived by natural input; however, the total organic carbon was proven to be derived by anthropogenic sources. Moreover, the principal component analysis has verified that the distribution of metals in the bay's sediment was dominantly influenced by natural processes. However, the utilization and manipulation of marine resources are slightly affecting the bay's ecosystem which may deteriorate the ecosystem health soon.
  12. Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, et al.
    Environ Geochem Health, 2023 Jun;45(6):3567-3583.
    PMID: 36450975 DOI: 10.1007/s10653-022-01442-2
    Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
  13. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
  14. Masood N, Alkhadher SAA, Magam SM, Halimoon N, Alsukaibi A, Zakaria MP, et al.
    PMID: 34697724 DOI: 10.1007/s10653-021-01088-6
    The aim of this a pioneering research is to investigate linear alkylbenzenes (LABs) as biomarkers of sewage pollution in sediments collected from four rivers and estuaries of the south and east of Peninsular Malaysia. The sediment samples went through soxhlet extraction, two-step column chromatography purification, fractionation and gas chromatography-mass spectrometry (GC-MS) analysis. Principal component analysis (PCA) with multivariate linear regression (MLR) was used as well for source apportionment of LABs. The results of this study showed that total LAB concentration was 36-1196 ng g-1dw. The internal to external isomer ratios (I/E ratio) of LABs were from 0.56 to 3.12 indicated release of raw sewage and primary and secondary effluents into the environment of south and east of Peninsular Malaysia. Our research supported that continuous monitoring of sewage pollution to limit the environmental pollution in riverine and estuarine ecosystem.
  15. Dahari N, Muda K, Latif MT, Dominick D, Hussein N, Khan MF
    PMID: 34596792 DOI: 10.1007/s10653-021-01099-3
    The smaller particles that dominate the particle number concentration (PNC) in the ambient air only contribute to a small percentage of particulate matter (PM) mass concentration although present in high particle number concentration. These small particles may be neglected upon assessing the health impacts of the PM. Hence, the knowledge on the particle number concentration size distribution deserves greater attention than the particulate mass concentration. This study investigates the measurement of the particle mass concentrations (PM2.5) and PNC of 0.27 μm 
  16. Zaki MRM, Ying PX, Zainuddin AH, Razak MR, Aris AZ
    Environ Geochem Health, 2021 Sep;43(9):3733-3748.
    PMID: 33712970 DOI: 10.1007/s10653-021-00872-8
    Microplastics have been considered as contaminants of emerging concern due to ubiquity in the environment; however, the occurrence of microplastics in river estuaries is scarcely investigated. The Klang River estuary is an important ecosystem that receives various contaminants from urbanised, highly populated areas and the busiest maritime centre in Selangor, Malaysia. This study investigates the abundance and characteristics of microplastics in surface water of the Klang River estuary. The abundance of microplastics ranged from 0.5 to 4.5 particles L-1 with a mean abundance of 2.47 particles L-1. There is no correlation between the abundance of microplastics and physicochemical properties, while there is a strong correlation between salinity and conductivity. The microplastics were characterised with a stereomicroscope and attenuated total reflection-Fourier transform infrared spectroscopy to analyse size, shape, colour, and polymer composition. The microplastics in the surface water were predominantly in the 300-1000 μm size class, followed by > 1000 μm and 
  17. Pongpiachan S
    PMID: 34287730 DOI: 10.1007/s10653-021-01039-1
    Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
  18. Nasir HM, Aris AZ, Abdullah LC, Ismail I
    PMID: 34129136 DOI: 10.1007/s10653-021-00999-8
    This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p  T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.
  19. Alam L, Rahman LF, Ahmed MF, Bari MA, Masud MM, Mokhtar MB
    Environ Geochem Health, 2021 May;43(5):2049-2063.
    PMID: 33389458 DOI: 10.1007/s10653-020-00783-0
    Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.
  20. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links