Displaying publications 1 - 20 of 77 in total

  1. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
  2. Xu D, Yang L, Zhao M, Zhang J, Syed-Hassan SSA, Sun H, et al.
    Environ Pollut, 2021 Feb 01;270:116120.
    PMID: 33341552 DOI: 10.1016/j.envpol.2020.116120
    Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOx emission.
  3. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
  4. Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, et al.
    Environ Pollut, 2020 Feb;257:113377.
    PMID: 31672363 DOI: 10.1016/j.envpol.2019.113377
    Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
  5. Vadrevu KP, Lasko K, Giglio L, Justice C
    Environ Pollut, 2014 Dec;195:245-56.
    PMID: 25087199 DOI: 10.1016/j.envpol.2014.06.017
    In this study, we assess the intense pollution episode of June 2013, in Riau province, Indonesia from land clearing. We relied on satellite retrievals of aerosols and Carbon monoxide (CO) due to lack of ground measurements. We used both the yearly and daily data for aerosol optical depth (AOD), fine mode fraction (FMF), aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI) for characterizing variations. We found significant enhancement in aerosols and CO during the pollution episode. Compared to mean (2008-2012) June AOD of 0.40, FMF-0.39, AAOD-0.45, UVAI-1.77 and CO of 200 ppbv, June 2013 values reached 0.8, 0.573, 0.672, 1.77 and 978 ppbv respectively. Correlations of fire counts with AAOD and UVAI were stronger compared to AOD and FMF. Results from a trajectory model suggested transport of air masses from Indonesia towards Malaysia, Singapore and southern Thailand. Our results highlight satellite-based mapping and monitoring of pollution episodes in Southeast Asia.
  6. Tong SL, Pang FY, Phang SM, Lai HC
    Environ Pollut, 1996;91(2):209-16.
    PMID: 15091442
    The occurrence of tributyltin (TBT) is reported in the coastal waters of a few selected sites in Peninsular Malaysia. Water, bivalves and sediment samples collected were analysed specifically for TBT using sensitive analytical methods which involved a solvent extraction procedure with appropriate clean-up followed by graphite furnace atomic absorption spectrometric measurements. The levels of TBT in the seawater in unexposed areas were found in the range from <3.4 to 20 ng litre(-1) as compared to coastal areas with high boat and ship activities where TBT levels in seawater were generally above 30 ng litre(-1), with the highest level found at 281.8 ng litre(-1). TBT levels in the tissues of random cockle and soft-shell clam samples from local markets were found in the range from <0.5 to 3.7 ng g(-1) wet weight. The levels of TBT found in green mussel samples both from the market (23.5 ng g(-1) wet weight) and those from a mussel farm (14.2 ng g(-1) wet weight) indicate slight accumulation of TBT. In sediments, TBT levels were found ranging from <0.7 ng g(-1) dry weight in unexposed coastal sites to as high as 216.5 ng g(-1) dry weight for a site within a port area.
  7. Thanh Hai L, Tran QB, Tra VT, Nguyen TPT, Le TN, Schnitzer H, et al.
    Environ Pollut, 2020 Oct;265(Pt B):114853.
    PMID: 32480006 DOI: 10.1016/j.envpol.2020.114853
    This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.
  8. Thalib YA, Razali RS, Mohamad S, Zainuddin R', Rahmah S, Ghaffar MA, et al.
    Environ Pollut, 2021 Feb 15;271:116375.
    PMID: 33422747 DOI: 10.1016/j.envpol.2020.116375
    Rising of temperature in conjunction with acidification due to the anthropogenic climates has tremendously affected all aquatic life. Small changes in the surrounding environment could lead to physiological constraint in the individual. Therefore, this study was designed to investigate the effects of warm water temperature (32 °C) and low pH (pH 6) on physiological responses and growth of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles for 25 days. Growth performance was significantly affected under warm water temperature and low-pH conditions. Surprisingly, the positive effect on growth was observed under the interactive effects of warm water and low pH exposure. Hybrid grouper exposed to the interactive stressor of warm temperature and low pH exhibited higher living cost, where HSI content was greatly depleted to about 2.3-folds than in normal circumstances. Overall, challenge to warm temperature and low pH induced protein mobilization as an energy source followed by glycogen and lipid to support basal metabolic needs.
  9. Tanabe S, Kunisue T
    Environ Pollut, 2007 Mar;146(2):400-13.
    PMID: 16949712
    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk.
  10. Tan WT, Tan GS, Nather Khan IS
    Environ Pollut, 1988;52(3):221-35.
    PMID: 15092608
    Chemical forms of copper and lead in river water of the Linggi River Basin have been fractionated into ASV labile, moderately labile, slowly labile, and inert metal species, based on a previously proposed scheme. Free (hydrated) metal ions were identified by a potentiometric method using an ion selective electrode. Speciation results showed that the soluble copper and lead species occurred mainly in the moderately labile and slowly labile fractions. The speciation results are primarily interpreted in terms of organic interaction due to agricultural based and light industries, and urban discharges. The measured metal complexing capacity (MCC) of the samples reveals consistency of the results with the nature of the discharge. MCC correlates reasonably well with the value from the permanganate test on the river water. In general, the speciation pattern was found to be consistent with the findings of other workers.
  11. Tan Sian Hui Abdullah HS, Aqlili Riana Mohd Asseri SN, Khursyiah Wan Mohamad WN, Kan SY, Azmi AA, Yong Julius FS, et al.
    Environ Pollut, 2021 Feb 15;271:116295.
    PMID: 33383429 DOI: 10.1016/j.envpol.2020.116295
    This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO3 solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 3:7 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.
  12. Surif S, Chai CY
    Environ Pollut, 1995;88(2):177-81.
    PMID: 15091558
    The study of lead exposure among workers in Selangor and the Federal Territory was carried out based on the delta-aminolevulinic acid (ALA) level in urine. Occupations which are expected to have higher lead exposure were chosen in this research. The ALA level in the workers' urine was linked to a few variables which may contribute to the lead level in the body. The result of this study showed that the ALA level of the urine of university students (0.352 +/- 0.038 mg/100 ml) < clerical staff (0.560 +/- 0.043 mg/100 ml) < traffic police (0.612 +/- 0.064 mg/100 ml) < vehicle workshop workers (0.673 +/- 0.099 mg/100 ml) < petrol kiosk workers (0.717 +/- 0.069 mg/100 ml) < bus drivers/conductors (0.850 +/- 0.055 mg/100 ml) which was similar to workers in the printing industry (0.852 +/- 0.110 mg/100 ml). The ALA levels in the urine of the exposed workers were significantly different from the control group (university students). However, results obtained from clerical staff revealed that they were also in the exposed group category. Analysis of variance showed that the exposed groups are in a population which is different from the control population. Correlation tests suggest that there is no significant connection between the ALA level in the urine and the variables tested. Furthermore, Duncan's Multiple Range Test showed no significant differences between the smoking/non smoking group, alcoholic/non-alcoholic group, race and sex (p > 0.05).
  13. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
  14. Su G, Ong HC, Ibrahim S, Fattah IMR, Mofijur M, Chong CT
    Environ Pollut, 2021 Jun 15;279:116934.
    PMID: 33744627 DOI: 10.1016/j.envpol.2021.116934
    The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
  15. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
  16. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
  17. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
  18. Raksasat R, Lim JW, Kiatkittipong W, Kiatkittipong K, Ho YC, Lam MK, et al.
    Environ Pollut, 2020 Dec;267:115488.
    PMID: 32891050 DOI: 10.1016/j.envpol.2020.115488
    The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
  19. Radzi Abas M, Ahmad-Shah A, Nor Awang M
    Environ Pollut, 1992;75(2):209-13.
    PMID: 15092035
    A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.
  20. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links