Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Jun LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, et al.
    Environ Pollut, 2020 Apr;259:113940.
    PMID: 31931415 DOI: 10.1016/j.envpol.2020.113940
    Jicama peroxidase (JP) was covalently immobilized onto functionalized multi-walled carbon nanotube (MWCNT) Buckypaper/Polyvinyl alcohol (BP/PVA) membrane and employed for degradation of methylene blue dye. The parameters of the isotherm and kinetic models are estimating using ant colony optimization (ACO), which do not meddle the non-linearity form of the respective models. The proposed inverse modelling through ACO optimization was implemented, and the parameters were evaluated to minimize the non-linear error functions. The adsorption of MB dye onto JP-immobilized BP/PVA membrane follows Freundlich isotherm model (R2 = 0.99) and the pseudo 1st order or 2nd kinetic model (R2 = 0.980 & 0.968 respectively). The model predictions from the parameters estimated by ACO resulted values close the experimental values, thus inferring that this approach captured the inherent characteristics of MB adsorption. Moreover, the thermodynamic studies indicated that the adsorption was favourable, spontaneous, and exothermic in nature. The comprehensive structural analyses have confirmed the successful binding of peroxidase onto BP/PVA membrane, as well as the effective MB dye removal using immobilized JP membrane. Compared to BP/PVA membrane, the reusability test revealed that JP-immobilized BP/PVA membrane has better dye removal performances as it can retain 64% of its dye removal efficiency even after eight consecutive cycles. Therefore, the experimental results along with modelling results demonstrated that JP-immobilized BP/PVA membrane is expected to bring notable impacts for the development of effective green and sustainable wastewater treatment technologies.
  2. Ahmad Kamal N, Muhammad NS, Abdullah J
    Environ Pollut, 2020 Apr;259:113909.
    PMID: 31927277 DOI: 10.1016/j.envpol.2020.113909
    Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH3-N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH3-N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH3-N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH3-N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.
  3. Othman J, Sahani M, Mahmud M, Ahmad MK
    Environ Pollut, 2014 Jun;189:194-201.
    PMID: 24682070 DOI: 10.1016/j.envpol.2014.03.010
    This study assessed the economic value of health impacts of transboundary smoke haze pollution in Kuala Lumpur and adjacent areas in the state of Selangor, Malaysia. Daily inpatient data from 2005, 2006, 2008, and 2009 for 14 haze-related illnesses were collected from four hospitals. On average, there were 19 hazy days each year during which the air pollution levels were within the Lower Moderate to Hazardous categories. No seasonal variation in inpatient cases was observed. A smoke haze occurrence was associated with an increase in inpatient cases by 2.4 per 10,000 populations each year, representing an increase of 31 percent from normal days. The average annual economic loss due to the inpatient health impact of haze was valued at MYR273,000 ($91,000 USD).
  4. Al-Raad AA, Hanafiah MM, Naje AS, Ajeel MA
    Environ Pollut, 2020 Oct;265(Pt B):115049.
    PMID: 32599327 DOI: 10.1016/j.envpol.2020.115049
    In this study, a novel rotating anode-based reactor (RAR) was designed to investigate its effectiveness in removing dissolved salts (i.e., Br-, Cl-, TDS, and SO42-) from saline water samples. Two configurations of an impeller's rotating anode with various operation factors, such as operating time (min), rotating speed (rpm), current density (mA/cm2), temperature (°C), pH, and inter-electrode space (cm), were used in the desalination process. The total cost consumed was calculated on the basis of the energy consumption and aluminum (Al) used in the desalination. In this respect, operating costs were calculated using optimal operating conditions. Salinity was removed electrochemically from saline water through electrocoagulation (EC). Results showed that the optimal adjustments for treating saline water were carried out at the following conditions: 150 and 75 rpm rotating speeds for the impeller's rod anode and plate anode designs, respectively; 2 mA/cm2 current density (I), 1 cm2 inter-electrode space, 25 °C temperature, 10 min operation time, and pH 8. The results indicated that EC technology with impeller plates of rotating anode can be considered a very cost-effective technique for treating saline water.
  5. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
  6. Rajendran S, Hoang TKA, Trudeau ML, Jalil AA, Naushad M, Awual MR
    Environ Pollut, 2022 Jan 01;292(Pt B):118375.
    PMID: 34656681 DOI: 10.1016/j.envpol.2021.118375
    Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO2-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
  7. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS
    Environ Pollut, 2021 Sep 15;285:117490.
    PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490
    The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
  8. Baskaran SM, Zakaria MR, Mukhlis Ahmad Sabri AS, Mohamed MS, Wasoh H, Toshinari M, et al.
    Environ Pollut, 2021 Feb 13;276:116742.
    PMID: 33621735 DOI: 10.1016/j.envpol.2021.116742
    Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E24) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E24=50%. The surface tension reduction obtained from 72.13 mN/m to 29.4-30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC50 value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
  9. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
  10. Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K
    Environ Pollut, 2021 Feb 15;271:116311.
    PMID: 33383425 DOI: 10.1016/j.envpol.2020.116311
    Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
  11. Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, Eniola JO, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118421.
    PMID: 34756874 DOI: 10.1016/j.envpol.2021.118421
    The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
  12. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
  13. Surif S, Chai CY
    Environ Pollut, 1995;88(2):177-81.
    PMID: 15091558
    The study of lead exposure among workers in Selangor and the Federal Territory was carried out based on the delta-aminolevulinic acid (ALA) level in urine. Occupations which are expected to have higher lead exposure were chosen in this research. The ALA level in the workers' urine was linked to a few variables which may contribute to the lead level in the body. The result of this study showed that the ALA level of the urine of university students (0.352 +/- 0.038 mg/100 ml) < clerical staff (0.560 +/- 0.043 mg/100 ml) < traffic police (0.612 +/- 0.064 mg/100 ml) < vehicle workshop workers (0.673 +/- 0.099 mg/100 ml) < petrol kiosk workers (0.717 +/- 0.069 mg/100 ml) < bus drivers/conductors (0.850 +/- 0.055 mg/100 ml) which was similar to workers in the printing industry (0.852 +/- 0.110 mg/100 ml). The ALA levels in the urine of the exposed workers were significantly different from the control group (university students). However, results obtained from clerical staff revealed that they were also in the exposed group category. Analysis of variance showed that the exposed groups are in a population which is different from the control population. Correlation tests suggest that there is no significant connection between the ALA level in the urine and the variables tested. Furthermore, Duncan's Multiple Range Test showed no significant differences between the smoking/non smoking group, alcoholic/non-alcoholic group, race and sex (p > 0.05).
  14. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
  15. Raksasat R, Lim JW, Kiatkittipong W, Kiatkittipong K, Ho YC, Lam MK, et al.
    Environ Pollut, 2020 Dec;267:115488.
    PMID: 32891050 DOI: 10.1016/j.envpol.2020.115488
    The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
  16. Tan Sian Hui Abdullah HS, Aqlili Riana Mohd Asseri SN, Khursyiah Wan Mohamad WN, Kan SY, Azmi AA, Yong Julius FS, et al.
    Environ Pollut, 2021 Feb 15;271:116295.
    PMID: 33383429 DOI: 10.1016/j.envpol.2020.116295
    This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO3 solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 3:7 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.
  17. Lee CC, Tran MV, Choo CW, Tan CP, Chiew YS
    Environ Pollut, 2020 Oct;265(Pt A):115058.
    PMID: 32806396 DOI: 10.1016/j.envpol.2020.115058
    Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO2) and nitrogen dioxide (NO2) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.-12 p.m.) and afternoon hours (3 p.m.-7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
  18. Su G, Ong HC, Ibrahim S, Fattah IMR, Mofijur M, Chong CT
    Environ Pollut, 2021 Jun 15;279:116934.
    PMID: 33744627 DOI: 10.1016/j.envpol.2021.116934
    The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
  19. Karami A, Karbalaei S, Zad Bagher F, Ismail A, Simpson SL, Courtenay SC
    Environ Pollut, 2016 Aug;215:170-177.
    PMID: 27182978 DOI: 10.1016/j.envpol.2016.05.014
    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
  20. Nhu TT, Schaubroeck T, Henriksson PJG, Bosma R, Sorgeloos P, Dewulf J
    Environ Pollut, 2016 Dec;219:156-165.
    PMID: 27814531 DOI: 10.1016/j.envpol.2016.10.006
    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links