Displaying publications 1 - 20 of 221 in total

Abstract:
Sort:
  1. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
  2. Karami A, Romano N, Galloway T, Hamzah H
    Environ Res, 2016 Nov;151:58-70.
    PMID: 27451000 DOI: 10.1016/j.envres.2016.07.024
    Despite the ubiquity of microplastics (MPs) in aquatic environments and their proven ability to carry a wide variety of chemicals, very little is known about the impacts of virgin or contaminant-loaded MPs on organisms. The primary aim of this study was to investigate the impacts of virgin or phenanthrene (Phe)-loaded low-density polyethylene (LDPE) fragments on a suite of biomarker responses in juvenile African catfish (Clarias gariepinus). Virgin LDPE (50 or 500µg/L) were preloaded with one of two nominal Phe concentrations (10 or 100µg/L) and were exposed to the fish for 96h. Our findings showed one or both Phe treatments significantly increased the degree of tissue change (DTC) in the liver while decreased the transcription levels of forkhead box L2 (foxl2) and tryptophan hydroxylase2 (tph2) in the brain of C. gariepinus. Exposure to either levels of virgin MPs increased the DTC in the liver and plasma albumin: globulin ratio while decreased the transcription levels of tph2. Moreover, MPs modulated (interacted with) the impact of Phe on the DTC in the gill, plasma concentrations of cholesterol, high-density lipoprotein (HDL), total protein (TP), albumin, and globulin, and the transcription levels of fushi tarazu-factor 1 (ftz-f1), gonadotropin-releasing hormone (GnRH), 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2), and liver glycogen stores. Results of this study highlight the ability of virgin LDPE fragments to cause toxicity and to modulate the adverse impacts of Phe in C. gariepinus. Due to the wide distribution of MPs and other classes of contaminants in aquatic environments, further studies are urgently needed to elucidate the toxicity of virgin or contaminant-loaded MPs on organisms.
  3. Ahmed A, Abu Bakar MS, Hamdani R, Park YK, Lam SS, Sukri RS, et al.
    Environ Res, 2020 07;186:109596.
    PMID: 32361527 DOI: 10.1016/j.envres.2020.109596
    Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.
  4. Soh EYS, Lim SS, Chew KW, Phuang XW, Ho VMV, Chu KYH, et al.
    Environ Res, 2021 Nov 13.
    PMID: 34780790 DOI: 10.1016/j.envres.2021.112385
    The effluent of textile industries containing synthetic dyes contributed to substantial pollution to water bodies. The biosorption process of Congo Red dye was successfully performed by integrating ultrasonication in the adsorption step with spent brewery yeast as a novel and renewable biosorbent. The adsorption process was hindered when ultrasonication was employed together with the biosorbent, indicating that desorption process had occurred. The adsorption process showed that 4 g/L of biosorbent was the optimum dosage for adsorption of 50 mg/L of Congo Red dye, and that the adsorption equilibrium fitted to the Langmuir model, with kinetics best fitted with pseudo-second order model. The maximum capacity of the adsorption was 52.6 mg/g, showing the potential of spent brewery yeast to aid in removing wastewater pollutants. Maximal Congo Red dye recovery (100%) was achieved in the sonication-assisted desorption studies using 0.01M NaOH as the eluting agent. The ultrasonication effects contributed to the efficient recovery of dye and good conversion of spent brewery yeast to biosorbent can be beneficial for treating pollution from textile wastewater.
  5. As V, Kumar G, Dey N, Karunakaran R, K A, Patel AK, et al.
    Environ Res, 2023 Jan 01;216(Pt 2):114400.
    PMID: 36265604 DOI: 10.1016/j.envres.2022.114400
    Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.
  6. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  7. Sharma S, Show PL, Aminabhavi TM, Sevda S, Garlapati VK
    Environ Res, 2023 Jan 24;227:115320.
    PMID: 36706904 DOI: 10.1016/j.envres.2023.115320
    The present study develops a novel concept of using waste media as an algal nutrient resource compared to the usual growth media with the aid of growth kinetics study and metabolite production abilities. Food- and agri-compost wastes are compact structures with elemental compounds for microbial media. As a part of the study, environ-burden wastes (3:1) as a food source for photosynthetic algae as a substitute for the costly nutrient media were proposed. The environment-burden waste was also envisaged for macromolecule production, i.e., 99200 μg/ml lipid, 112.5 μg/ml protein, and 8.75 μg/ml carbohydrate with different dilutions of agri-waste, bold basal media (BBM), and Food waste, respectively. The fabricated growth kinetics and dynamics showcased the unstructured models of different photosynthetic algal growth phases and the depiction of productivity and kinetic parameters. The theoretical maximum biomass concentration (Xp) was found to be more (0.871) with diluted agricompost media than the usual BBM (0.697). The XLim values were found to be 0.362, 0.323 and 0.209 for BBM, diluted agri-compost media and diluted food waste media, respectively. Overall, the study proposes a cleaner approach of utilizing the wastes as growth media through a circular economy approach which eventually reduces the growth media cost with integrated macromolecule production capabilities.
  8. Kiong TC, Nordin N, Ahmad Ruslan NAA, Kan SY, Ismail NM, Zakaria Z, et al.
    Environ Res, 2022 Oct;213:113737.
    PMID: 35752328 DOI: 10.1016/j.envres.2022.113737
    To keep COVID-19 at bay, most countries have mandated the use of face masks in public places and imposed heavy penalties for those who fail to do so. This has inadvertently created a huge demand for disposable face masks and worsened the problem of littering, where a large number of used masks are constantly discarded into the environment. As such, an efficient and innovative waste management strategy for the discarded face mask is urgently needed. This study presents the transformation of discarded face mask into catalyst termed 'mask waste ash catalyst (MWAC)' to synthesise bisindolylmethanes (BIMs), alkaloids that possess antibacterial, antioxidant and antiviral properties. Using commercially available aldehydes and indole, an excellent yield of reaction (62-94%) was achieved using the MWAC in the presence of water as the sole solvent. On the other hand, the FT-IR spectrum of MWAC showed the absorption bands at 2337 cm-1, 1415 cm-1 and 871 cm-1, which correspond to the signals of calcium oxide. It is then proposed that the calcium oxides mainly present in MWAC can protonate oxygen atoms in the carbonyl molecule of the aldehyde group, thus facilitating the nucleophile attack by indole which consequently improved the product yield. Moreover, the MWAC is also observed to facilitate the photodegradation of methylene blue with an efficiency of up to 94.55%. Our results showed the potential applications of the MWAC derived from discarded face masks as a sustainable catalyst for bioactive compound synthesis and photodegradation of dye compounds.
  9. Lim LS, Tan KS, Fu MY, Au HL, Ebi I, Mohamad Lal MT, et al.
    Environ Res, 2021 07;198:110472.
    PMID: 33189743 DOI: 10.1016/j.envres.2020.110472
    The Bokashi leachate (BL) is a by-product from the anaerobic digestion of food waste, following the Bokashi composting method. Bokashi leachate is acidic and it contains effective microorganisms hence it has potential to be a functional feed additive to the plant proteins based diets for fish farming. This study evaluated the growth performance and feed utilization of the red tilapia (Oreochromis sp.) fingerlings fed with the BL supplemented soybean meal (SBM) based diets. After an 8-week feeding trial, fish fed with the 5% BL supplemented SBM diet attained the highest weight gain. This result was significantly higher (p  0.05) to those fed with the control full fish meal (FM) diet. Generally, dietary inclusion of BL enhanced the fish feed intake on the SBM diet but it did not show clear sign of improvement in their feed utilization. In addition, no significant difference was found across the hepatosomatic index and viscerosomatic index from all dietary treatments. These outcomes concluded that dietary inclusion of BL can enhance the feed intake and growth performance of the red tilapia fingerlings fed with the SBM based diet without compromising their health, and the optimum BL inclusion level was 5%. Nevertheless, further study on the properties and substances content of the BL produced from different types and ratios of food waste is strongly recommended. In this study, BL was also discovered to be capable of reducing the crude fiber content in the SBM diets. Such observation deserves a further exploitation on the application of BL to manipulate the crude fiber content in the plant proteins based diets in fish farming.
  10. Nayeem A, Mizi F, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 2):114514.
    PMID: 36216117 DOI: 10.1016/j.envres.2022.114514
    The paper demonstrates the capability of using cockle shells as an adsorbent for phosphorus removal from simulated petrochemical wastewater, focusing on the actual condition of the petrochemical facultative pond. In this study, the physicochemical properties of shell powder were determined, such as the functional groups, surface morphology, crystalline structure, and surface area using FTIR, SEM, EDX, XRD, and BET. It was observed that the optimum conditions for effective phosphorus removal are under the presence of rotational speed (125 rpm), higher dosage (7 g/L), and larger surface area (smaller particle size) of the shell powder. Fine powder achieved up to 52.27% of phosphorus removal after 40 min compared to coarse powder which could only give 16.67% removal. Additionally, calcined shell powder demonstrated a higher phosphorus removal rate, i.e., up to 62.37%, compared to raw shell powders. The adsorption isotherm was studied using Langmuir and Freundlich models, but the isothermal data fit better for the Freundlich model (R2 = 0.9836). Overall, this study has successfully generated a greener and low-cost adsorbent.
  11. Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H
    Environ Res, 2022 May 01;207:112156.
    PMID: 34599897 DOI: 10.1016/j.envres.2021.112156
    Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.
  12. Yang Y, Foong SY, He Y, Liew RK, Ma NL, Yek PNY, et al.
    Environ Res, 2024 Jan 29;248:118282.
    PMID: 38295974 DOI: 10.1016/j.envres.2024.118282
    The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.
  13. Ahmad T, Kumar N, Kumar A, Mubashir M, Bokhari A, Paswan BK, et al.
    Environ Res, 2024 Mar 15;245:117960.
    PMID: 38135098 DOI: 10.1016/j.envres.2023.117960
    Carbon capture technologies are becoming increasingly crucial in addressing global climate change issues by lowering CO2 emissions from industrial and power generation activities. Post-combustion carbon capture, which uses membranes instead of adsorbents, has emerged as one of promising and environmentally friendly approaches among these technologies. The operation of membrane technology is based on the premise of selectively separating CO2 from flue gas emissions. This provides a number of different benefits, including improved energy efficiency and decreased costs of operation. Because of its adaptability to changing conditions and its low impact on the surrounding ecosystem, it is an appealing choice for a diverse array of uses. However, there are still issues to be resolved, such as those pertaining to establishing a high selectivity, membrane degradation, and the costs of the necessary materials. In this article, we evaluate and explore the prospective applications and roles of membrane technologies to control climate change by post-combustion carbon capturing. The primary proposition suggests that the utilization of membrane-based carbon capture has the potential to make a substantial impact in mitigating CO2 emissions originating from industrial and power production activities. This is due to its heightened ability to selectively absorb carbon, better efficiency in energy consumption, and its flexibility to various applications. The forthcoming challenges and potential associated with the application of membranes in post-carbon capture are also discussed.
  14. Fan YV, Čuček L, Si C, Jiang P, Vujanović A, Krajnc D, et al.
    Environ Res, 2024 Jan 15;241:117581.
    PMID: 37967705 DOI: 10.1016/j.envres.2023.117581
    Plastic consumption and its end-of-life management pose a significant environmental footprint and are energy intensive. Waste-to-resources and prevention strategies have been promoted widely in Europe as countermeasures; however, their effectiveness remains uncertain. This study aims to uncover the environmental footprint patterns of the plastics value chain in the European Union Member States (EU-27) through exploratory data analysis with dimension reduction and grouping. Nine variables are assessed, ranging from socioeconomic and demographic to environmental impacts. Three clusters are formed according to the similarity of a range of characteristics (nine), with environmental impacts being identified as the primary influencing variable in determining the clusters. Most countries belong to Cluster 0, consisting of 17 countries in 2014 and 18 countries in 2019. They represent clusters with a relatively low global warming potential (GWP), with an average value of 2.64 t CO2eq/cap in 2014 and 4.01 t CO2eq/cap in 2019. Among all the assessed countries, Denmark showed a significant change when assessed within the traits of EU-27, categorised from Cluster 1 (high GWP) in 2014 to Cluster 0 (low GWP) in 2019. The analysis of plastic packaging waste statistics in 2019 (data released in 2022) shows that, despite an increase in the recovery rate within the EU-27, the GWP has not reduced, suggesting a rebound effect. The GWP tends to increase in correlation with the higher plastic waste amount. In contrast, other environmental impacts, like eutrophication, abiotic and acidification potential, are identified to be mitigated effectively via recovery, suppressing the adverse effects of an increase in plastic waste generation. The five-year interval data analysis identified distinct clusters within a set of patterns, categorising them based on their similarities. The categorisation and managerial insights serve as a foundation for devising a focused mitigation strategy.
  15. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, et al.
    Environ Res, 2023 Feb 01;218:114967.
    PMID: 36455630 DOI: 10.1016/j.envres.2022.114967
    We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.
  16. Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, et al.
    Environ Res, 2023 Oct 01;234:116523.
    PMID: 37422115 DOI: 10.1016/j.envres.2023.116523
    Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
  17. Zaidi Farouk MIH, Jamil Z, Abdul Latip MF
    Environ Res, 2023 Dec 01;238(Pt 1):117147.
    PMID: 37716398 DOI: 10.1016/j.envres.2023.117147
    The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.
  18. Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M
    Environ Res, 2021 Sep 17;204(Pt B):112043.
    PMID: 34543635 DOI: 10.1016/j.envres.2021.112043
    Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
  19. Nayeem A, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 1):114306.
    PMID: 36191616 DOI: 10.1016/j.envres.2022.114306
    Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
  20. Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, et al.
    Environ Res, 2022 May 01;207:112216.
    PMID: 34656630 DOI: 10.1016/j.envres.2021.112216
    Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links