Displaying publications 1 - 20 of 70 in total

  1. Karami A, Romano N, Galloway T, Hamzah H
    Environ Res, 2016 Nov;151:58-70.
    PMID: 27451000 DOI: 10.1016/j.envres.2016.07.024
    Despite the ubiquity of microplastics (MPs) in aquatic environments and their proven ability to carry a wide variety of chemicals, very little is known about the impacts of virgin or contaminant-loaded MPs on organisms. The primary aim of this study was to investigate the impacts of virgin or phenanthrene (Phe)-loaded low-density polyethylene (LDPE) fragments on a suite of biomarker responses in juvenile African catfish (Clarias gariepinus). Virgin LDPE (50 or 500µg/L) were preloaded with one of two nominal Phe concentrations (10 or 100µg/L) and were exposed to the fish for 96h. Our findings showed one or both Phe treatments significantly increased the degree of tissue change (DTC) in the liver while decreased the transcription levels of forkhead box L2 (foxl2) and tryptophan hydroxylase2 (tph2) in the brain of C. gariepinus. Exposure to either levels of virgin MPs increased the DTC in the liver and plasma albumin: globulin ratio while decreased the transcription levels of tph2. Moreover, MPs modulated (interacted with) the impact of Phe on the DTC in the gill, plasma concentrations of cholesterol, high-density lipoprotein (HDL), total protein (TP), albumin, and globulin, and the transcription levels of fushi tarazu-factor 1 (ftz-f1), gonadotropin-releasing hormone (GnRH), 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2), and liver glycogen stores. Results of this study highlight the ability of virgin LDPE fragments to cause toxicity and to modulate the adverse impacts of Phe in C. gariepinus. Due to the wide distribution of MPs and other classes of contaminants in aquatic environments, further studies are urgently needed to elucidate the toxicity of virgin or contaminant-loaded MPs on organisms.
  2. Ahmed A, Abu Bakar MS, Hamdani R, Park YK, Lam SS, Sukri RS, et al.
    Environ Res, 2020 07;186:109596.
    PMID: 32361527 DOI: 10.1016/j.envres.2020.109596
    Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.
  3. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  4. Lim LS, Tan KS, Fu MY, Au HL, Ebi I, Mohamad Lal MT, et al.
    Environ Res, 2021 07;198:110472.
    PMID: 33189743 DOI: 10.1016/j.envres.2020.110472
    The Bokashi leachate (BL) is a by-product from the anaerobic digestion of food waste, following the Bokashi composting method. Bokashi leachate is acidic and it contains effective microorganisms hence it has potential to be a functional feed additive to the plant proteins based diets for fish farming. This study evaluated the growth performance and feed utilization of the red tilapia (Oreochromis sp.) fingerlings fed with the BL supplemented soybean meal (SBM) based diets. After an 8-week feeding trial, fish fed with the 5% BL supplemented SBM diet attained the highest weight gain. This result was significantly higher (p  0.05) to those fed with the control full fish meal (FM) diet. Generally, dietary inclusion of BL enhanced the fish feed intake on the SBM diet but it did not show clear sign of improvement in their feed utilization. In addition, no significant difference was found across the hepatosomatic index and viscerosomatic index from all dietary treatments. These outcomes concluded that dietary inclusion of BL can enhance the feed intake and growth performance of the red tilapia fingerlings fed with the SBM based diet without compromising their health, and the optimum BL inclusion level was 5%. Nevertheless, further study on the properties and substances content of the BL produced from different types and ratios of food waste is strongly recommended. In this study, BL was also discovered to be capable of reducing the crude fiber content in the SBM diets. Such observation deserves a further exploitation on the application of BL to manipulate the crude fiber content in the plant proteins based diets in fish farming.
  5. Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H
    Environ Res, 2021 Sep 29.
    PMID: 34599897 DOI: 10.1016/j.envres.2021.112156
    Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2.g-1) with high pore volume (1.054 cm3.g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg.g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.
  6. Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M
    Environ Res, 2021 Sep 17;204(Pt B):112043.
    PMID: 34543635 DOI: 10.1016/j.envres.2021.112043
    Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
  7. Peng W, Sonne C, Lam SS, Ok YS, Alstrup AKO
    Environ Res, 2020 02;181:108887.
    PMID: 31732170 DOI: 10.1016/j.envres.2019.108887
    The Amazon rainforest has sustained human existence for more than 10,000 years. Part of this has been the way that the forest controls regional climate including precipitation important for the ecosystem as well as agroforestry and farming. In addition, the Amazon also affects the global weather systems, so cutting down the rainforest significantly increases the effects of climate change, threatening the world's biodiversity and causing local desertification and soil erosion. The current fire activities and deforestation in the Amazon rainforest therefore have consequences for global sustainability. In the light of this, the current decisions made in Brazil regarding an increase in Amazon deforestation require policy changes if the global ecosystems and biodiversity are not to be set to collapse. There is only one way to move forward and that is to increase efforts in sustainable development of the region including limitation in deforestation and to continuously measure and monitor the development. The G7 countries have offered Brazil financial support for at least 20 million euros for fighting the forest fires but the president denies receiving such financial support and says that it is more relevant to raise new forests in Europe. In fact, this is exactly what is happening in Denmark and China in order to reduce climate change. Such activities should be global and include South America, Europe, Africa and Asia where deforestation is important issue. Forest restoration reduces climate change, desertification, and preserves both the regional tropical and global environment if the wood is not burned at a later stage but instead used in e.g. roads as filling material. Changes are therefore needed through improved international understanding and agreements to better avoid the global climate changes, from cutting down the precious rainforest before it is too late as rainforest cannot be re-planted.
  8. Clark CS, Rampal KG, Thuppil V, Chen CK, Clark R, Roda S
    Environ Res, 2006 Sep;102(1):9-12.
    PMID: 16782088
    Worldwide prohibitions on lead gasoline additives were a major international public health accomplishment, the results of which are still being documented in parts of the world. Although the need to remove lead from paints has been recognized for over a century, evidence reported in this article indicates that lead-based paints for household use, some containing more than 10% lead, are readily available for purchase in some of the largest countries in the world. Sixty-six percent of new paint samples from China, India, and Malaysia were found to contain 5000 ppm (0.5%) or more of lead, the US definition of lead-based paint in existing housing, and 78% contained 600 ppm (0.06%) or more, the limit for new paints. In contrast, the comparable levels in a nearby developed country, Singapore, were 0% and 9%. In examining lead levels in paints of the same brands purchased in different countries, it was found that some brands had lead-based paints in one of the countries and paints meeting US limits in another; another had lead-free paint available in all countries where samples were obtained. Lead-based paints have already poisoned millions of children and likely will cause similar damage in the future as paint use increases as countries in Asia and elsewhere continue their rapid development. The ready availability of lead-based paints documented in this article provides stark evidence of the urgent need for efforts to accomplish an effective worldwide ban on the use of lead in paint.
  9. Ramu AG, Umar A, Ibrahim AA, Algadi H, Ibrahim YSA, Wang Y, et al.
    Environ Res, 2021 09;200:111366.
    PMID: 34029547 DOI: 10.1016/j.envres.2021.111366
    In the present research work, 2D-Porous NiO decorated graphene nanocomposite was synthesized by hydrothermal method to monitored the concentration of epinephrine (EPI). The morphology (SEM and TEM) results confirmed 2D-Porous NiO nanoparticles firmly attached over graphene nanosheets. FTIR and XPS analysis confirmed the formation of nickel oxide formation and complete reduction of GO to rGO. The electrochemical activity of the proposed NiO-rGO/GCE modified electrode on epinephrine was analyzed by simple cyclic voltammetry technique. The proposed low cost NiO-rGO/GCE modified electrode showed excellent catalytic activity over GCE and rGO/GCE electrodes. Due to its high conductivity and charge transfer ability of the NiO-rGO/GCE modified electrode exhibited high sensitivity of EPI at optimized conditions. The anodic peak current of the EPI linearly increases with increasing the concertation of EPI. A wide linear range (50 μM-1000 μM) was achieved with high correlation coefficient (R2 = 0.9986) and the limit of detection (LOD) of NiO-rGO/GCE modified electrode was calculated to be 10 μM. NiO-rGO/GCE electrode showed good stability and repeatability towards the EPI oxidation. Mainly, the proposed NiO-rGO/GCE modified electrode showed good sensitivity of EPI in the human biological fluid with high recovery percentage. The low cost, NiO-rGO/GCE electrode could be the promising sensor electrode for the detection of Epinephrine in the real samples.
  10. Cheng SY, Show PL, Juan JC, Ling TC, Lau BF, Lai SH, et al.
    Environ Res, 2020 09;188:109737.
    PMID: 32554270 DOI: 10.1016/j.envres.2020.109737
    Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
  11. Yap JX, Leo CP, Mohd Yasin NH, Show PL, Derek CJC
    Environ Res, 2021 08;199:111298.
    PMID: 33971133 DOI: 10.1016/j.envres.2021.111298
    Culture scaffolds allow microalgae cultivation with minimum water requirement using the air-liquid interface approach. However, the stability of cellulose-based scaffolds in microalgae cultivation remains questionable. In this study, the stability of regenerated cellulose culture scaffolds was enhanced by adjusting TiO2 loading and casting gap. The membrane scaffolds were synthesized using cellulose dissolved in NaOH/urea aqueous solution with various loading of TiO2 nanoparticles. The TiO2 nanoparticles were embedded into the porous membrane scaffolds as proven by Fourier transform infrared spectra, scanning electron microscopic images, and energy-dispersive X-ray spectra. Although surface hydrophilicity and porosity were enhanced by increasing TiO2 and casting gap, the scaffold pore size was reduced. Cellulose membrane scaffold with 0.05 wt% of TiO2 concentration and thickness of 100 μm attained the highest percentage of Navicula incerta growth rate, up to 37.4%. The membrane scaffolds remained stable in terms of weight, porosity and pore size even they were immersed in acidic solution, hydrogen peroxide or autoclaved at 121 °C for 15 min. The optimal cellulose membrane scaffold is with TiO2 loading of 0.5 wt% and thickness of 100 μm, resulting in supporting the highest N. incerta growth rate and and exhibits good membrane stability.
  12. Mofijur M, Ahmed SF, Rahman SMA, Arafat Siddiki SY, Islam ABMS, Shahabuddin M, et al.
    Environ Res, 2021 04;195:110857.
    PMID: 33581088 DOI: 10.1016/j.envres.2021.110857
    The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.
  13. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
  14. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
  15. Salahuddin M, Habib MA, Al-Mulali U, Ozturk I, Marshall M, Ali MI
    Environ Res, 2020 12;191:110094.
    PMID: 32846170 DOI: 10.1016/j.envres.2020.110094
    This study employs dynamic panel data for 34 Sub Saharan Africa (SSA) countries for the period 1984-2016 to estimate the effects of renewable energy on environmental quality measured by three indicators, namely, per capita CO2 emissions, energy intensity (EI) and Aggregate National Savings (ANS). The study leveraged a battery of second-generation econometric tests and estimation and causality methods to obtain the coefficients between the regressed and the regressors. Results reveal that use of renewable energy reduces CO2 emissions and energy intensity while it enhances ANS. Economic growth still seems to be expensive for the region as it stimulates CO2 emissions. However, it has a positive effect on ANS. As expected, fossil fuels exacerbate CO2 emissions and energy intensity. FDI is found to be detrimental for the environment of SSA region with its positive significant coefficient on CO2 emissions. Financial development is reported to reduce CO2 emissions. Some causal links between variables are also noted.
  16. Hitam CNC, Jalil AA
    Environ Res, 2021 Aug 27;204(Pt A):111964.
    PMID: 34461122 DOI: 10.1016/j.envres.2021.111964
    As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
  17. Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF
    Environ Res, 2021 Sep 15.
    PMID: 34536369 DOI: 10.1016/j.envres.2021.112045
    A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
  18. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 01;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
  19. Munir M, Ahmad M, Rehan M, Saeed M, Lam SS, Nizami AS, et al.
    Environ Res, 2021 02;193:110398.
    PMID: 33127396 DOI: 10.1016/j.envres.2020.110398
    This study focused on producing high quality and yield of biodiesel from novel non-edible seed oil of abundantly available wild Raphnus raphanistrum L. using an efficient, recyclable and eco-friendly copper modified montmorillonite (MMT) clay catalyst. The maximum biodiesel yield of 83% was obtained by base catalyzed transesterification process under optimum operating conditions of methanol to oil ratio of 15:1, reaction temperature of 150 °C, reaction time of 5 h and catalyst loading of 3.5%. The synthesized catalyst and biodiesel were characterized for their structural features and chemical compositions using various state-of-the-art techniques, including x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H, 13C) and gas chromatography-mass spectroscopy. The fuel properties of the biodiesel were estimated including kinematic viscosity (4.36 cSt), density (0.8312 kg/L), flash point (72 °C), acid value (0.172 mgKOH/g) and sulphur content (0.0002 wt.%). These properties were compared and found in good agreement with the International Biodiesel Standards of American (ASTM-951, 6751), European Committee (EN-14214) and China GB/T 20828 (2007). The catalyst was re-used in five consecutive transesterification reactions without losing much catalytic efficiency. Overall, non-edible Raphnus raphanistrum L.. seed oil and Cu doped MMT clay catalyst appeared to be highly active, stable, and cheap contenders for future biofuel industry. However, detailed life cycle assessment (LCA) studies of Raphnus raphanistrum L. seed oil biodiesel are highly recommended to assess the technical, ecological, social and economic challenges.
  20. Siavash NK, Ghobadian B, Najafi G, Rohani A, Tavakoli T, Mahmoodi E, et al.
    Environ Res, 2021 05;196:110434.
    PMID: 33166537 DOI: 10.1016/j.envres.2020.110434
    Wind power is one of the most popular sources of renewable energies with an ideal extractable value that is limited to 0.593 known as the Betz-Joukowsky limit. As the generated power of wind machines is proportional to cubic wind speed, therefore it is logical that a small increment in wind speed will result in significant growth in generated power. Shrouding a wind turbine is an ordinary way to exceed the Betz limit, which accelerates the wind flow through the rotor plane. Several layouts of shrouds are developed by researchers. Recently an innovative controllable duct is developed by the authors of this work that can vary the shrouding angle, so its performance is different in each opening angle. As a wind tunnel investigation is heavily time-consuming and has a high cost, therefore just four different opening angles have been assessed. In this work, the performance of the turbine was predicted using multiple linear regression and an artificial neural network in a wide range of duct opening angles. For the turbine power generation and its rotor angular speed in different wind velocities and duct opening angles, regression and an ANN are suggested. The developed neural network model is found to possess better performance than the regression model for both turbine power curve and rotor speed estimation. This work revealed that in higher ranges of wind velocity, the turbine performance intensively will be a function of shrouding angle. This model can be used as a lookup table in controlling the turbines equipped with the proposed mechanism.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links