Displaying publications 1 - 20 of 221 in total

Abstract:
Sort:
  1. Zaidi Farouk MIH, Jamil Z, Abdul Latip MF
    Environ Res, 2023 Dec 01;238(Pt 1):117147.
    PMID: 37716398 DOI: 10.1016/j.envres.2023.117147
    The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.
  2. Jun LY, Karri RR, Yon LS, Mubarak NM, Bing CH, Mohammad K, et al.
    Environ Res, 2020 04;183:109158.
    PMID: 32044575 DOI: 10.1016/j.envres.2020.109158
    Jicama peroxidase (JP) immobilized functionalized Buckypaper/Polyvinyl alcohol (BP/PVA) membrane was synthesized and evaluated as a promising nanobiocomposite membrane for methylene blue (MB) dye removal from aqueous solution. The effects of independent process variables, including pH, agitation speed, initial concentration of hydrogen peroxide (H2O2), and contact time on dye removal efficiency were investigated systematically. Both Response Surface Methodology (RSM) and Artificial Neural Network coupled with Particle Swarm Optimization (ANN-PSO) approaches were used for predicting the optimum process parameters to achieve maximum MB dye removal efficiency. The best optimal topology for PSO embedded ANN architecture was found to be 4-6-1. This optimized network provided higher R2 values for randomized training, testing and validation data sets, which are 0.944, 0.931 and 0.946 respectively, thus confirming the efficacy of the ANN-PSO model. Compared to RSM, results confirmed that the hybrid ANN-PSO shows superior modeling capability for prediction of MB dye removal. The maximum MB dye removal efficiency of 99.5% was achieved at pH-5.77, 179 rpm, ratio of H2O2/MB dye of 73.2:1, within 229 min. Thus, this work demonstrated that JP-immobilized BP/PVA membrane is a promising and feasible alternative for treating industrial effluent.
  3. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA
    Environ Res, 2019 09;176:108563.
    PMID: 31280029 DOI: 10.1016/j.envres.2019.108563
    Environmental monitoring is important to determine the extent of eco-system pollution and degradation so that effective remedial strategies can be formulated. In this study, an environmentally friendly and cost-effective sensor made up of novel carbon electrode modified with cellulose and hydroxyapatite was developed for the detection of trace lead ions in aqueous system and palm oil mill effluent. Zinc, cadmium, and copper with lead were simultaneously detected using this method. The electrode exhibited high tolerance towards twelve common metal ions and three model surface active substances - sodium dodecyl sulfate, Triton X-100, and cetyltrimethylammonium bromide. Under optimum conditions, the sensor detected lead ions in palm oil mill effluent in the concentration range of 10-50 μg/L with 0.11 ± 0.37 μg/L limit of detection and 0.37 ± 0.37 μg/L limit of quantification. The validation using tap water, blood serum and palm oil mill effluent samples and compared with Atomic Absorption Spectroscopy, suggested excellent sensitivity of the sensor to detect lead ions in simple and complex matrices. The cellulose produced based on "green" techniques from agro-lignocellulosic wastes, in combination with hydroxyapatite, were proven effective as components in the carbon electrode composite. It has great potential in both clinical and environmental use.
  4. Li B, Wu G, Yang X, Li Z, Albasher G, Alsultan N, et al.
    Environ Res, 2023 Jul 15;229:115781.
    PMID: 37076035 DOI: 10.1016/j.envres.2023.115781
    Endocrine disrupting chemicals (EDCs) have been extensively explored due to their harmful effects on individual health and the environment by interfering with hormone activity and disrupting the endocrine system. However, their relationship with essential trace elements remains uncertain. This research aimed to investigate the possible correlation between essential trace elements and toxic metals, including cadmium (Cd), and lead (Pb) in children aged 1-5 years with various infectious diseases, including gastrointestinal disorders, typhoid fever, and pneumonia. The study was conducted on biological testing and specimen (scalp hair and whole blood) of diseased and non-diseased children of the same residential area and referent/control age-matched children from developed cities consuming domestically treated water. The media of biological samples were oxidized by an acid mixture before being analyzed by atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through accredited reference material from scalp hair and whole blood sample. The study results revealed that diseased children had lower mean values of essential trace elements (iron, copper, and zinc) in both scalp hair and blood, except for copper, which was found to be higher in blood samples of diseased children. This implies that the deficiency of essential residue and trace elements in children from rural areas who consume groundwater is linked to various infectious diseases. The study highlights the need for more human biomonitoring of EDCs to better comprehend their non-classical toxic properties and their concealed costs on human health. The findings suggest that exposure to EDCs could be associated with unfavorable health outcomes and emphasizes the need for future regulatory policies to minimize exposure and safeguard the health of current and forthcoming generations of children. Furthermore, the study highlights the implication of essential trace elements in maintaining good health and their potential correlation with toxic metals in the environment.
  5. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
  6. Siew SW, Musa SM, Sabri N', Farida Asras MF, Ahmad HF
    Environ Res, 2023 Feb 15;219:115139.
    PMID: 36565841 DOI: 10.1016/j.envres.2022.115139
    The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and 
  7. Mokhtar K, Chuah LF, Abdullah MA, Oloruntobi O, Ruslan SMM, Albasher G, et al.
    Environ Res, 2023 Dec 15;239(Pt 2):117314.
    PMID: 37805186 DOI: 10.1016/j.envres.2023.117314
    Coastal ecosystems are facing heightened risks due to human-induced climate change, including rising water levels and intensified storm events. Accurate bathymetry data is crucial for assessing the impacts of these threats. Traditional data collection methods can be cost-prohibitive. This study investigates the feasibility of using freely accessible Landsat and Sentinel satellite imagery to estimate bathymetry and its correlation with hydrographic chart soundings in Port Klang, Malaysia. Through analysis of the blue and green spectral bands from the Landsat 8 and Sentinel 2 datasets, a bathymetry map of Port Klang's seabed is generated. The precision of this derived bathymetry is evaluated using statistical metrics like Root Mean Square Error (RMSE) and the coefficient of determination. The results reveal a strong statistical connection (R2 = 0.9411) and correlation (R2 = 0.7958) between bathymetry data derived from hydrographic chart soundings and satellite imagery. This research not only advances our understanding of employing Landsat imagery for bathymetry assessment but also underscores the significance of such assessments in the context of climate change's impact on coastal ecosystems. The primary goal of this research is to contribute to the comprehension of Landsat imagery's utility in bathymetry evaluation, with the potential to enhance safety protocols in seaport terminals and provide valuable insights for decision-making concerning the management of coastal ecosystems amidst climate-related challenges. The findings of this research have practical implications for a wide range of stakeholders involved in coastal management, environmental protection, climate adaptation and disaster preparedness.
  8. Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA
    Environ Res, 2022 Feb 07.
    PMID: 35143802 DOI: 10.1016/j.envres.2022.112861
    In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.
  9. Rawindran H, Khoo KS, Ethiraj B, Lim JW, Liew CS, Goh PS, et al.
    Environ Res, 2024 Mar 16;251(Pt 2):118687.
    PMID: 38493853 DOI: 10.1016/j.envres.2024.118687
    The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.
  10. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip B, Othman N, Hossain S, et al.
    Environ Res, 2022 03;204(Pt A):111926.
    PMID: 34461120 DOI: 10.1016/j.envres.2021.111926
    The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 μL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 μl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.
  11. Almalawi A, Alsolami F, Khan AI, Alkhathlan A, Fahad A, Irshad K, et al.
    Environ Res, 2022 Apr 15;206:112576.
    PMID: 34921824 DOI: 10.1016/j.envres.2021.112576
    Air pollution is the existence of atmospheric chemicals damaging the health of human beings and other living organisms or damaging the environment or resources. Rarely any common contaminants are smog, nicotine, mold, yeast, biogas, or carbon dioxide. The paper will primarily observe, visualize and anticipate pollution levels. In particular, three algorithms of Artificial Intelligence were used to create good forecasting models and a predictive AQI model for 4 distinct gases: carbon dioxide, sulphur dioxide, nitrogen dioxide, and atmospheric particulate matter. Thus, in this paper, the Air Qualification Index is developed utilizing Linear Regression, Support Vector Regression, and the Gradient Boosted Decision Tree GBDT Ensembles model over the next 5 h and analyzes air qualities using various sensors. The hypothesized artificial intelligence models are evaluated to the Root Mean Squares Error, Mean Squared Error and Mean absolute error, depending upon the performance measurements and a lower error value model is chosen. Based on the algorithm of the Artificial Intelligent System, the level of 5 air pollutants like CO2, SO2, NO2, PM 2.5 and PM10 can be predicted immediately by integrating the observations with errors. It may be used to detect air quality from distance in large cities and can assist lower the degree of environmental pollution.
  12. Salahuddin M, Habib MA, Al-Mulali U, Ozturk I, Marshall M, Ali MI
    Environ Res, 2020 12;191:110094.
    PMID: 32846170 DOI: 10.1016/j.envres.2020.110094
    This study employs dynamic panel data for 34 Sub Saharan Africa (SSA) countries for the period 1984-2016 to estimate the effects of renewable energy on environmental quality measured by three indicators, namely, per capita CO2 emissions, energy intensity (EI) and Aggregate National Savings (ANS). The study leveraged a battery of second-generation econometric tests and estimation and causality methods to obtain the coefficients between the regressed and the regressors. Results reveal that use of renewable energy reduces CO2 emissions and energy intensity while it enhances ANS. Economic growth still seems to be expensive for the region as it stimulates CO2 emissions. However, it has a positive effect on ANS. As expected, fossil fuels exacerbate CO2 emissions and energy intensity. FDI is found to be detrimental for the environment of SSA region with its positive significant coefficient on CO2 emissions. Financial development is reported to reduce CO2 emissions. Some causal links between variables are also noted.
  13. Peng W, Sonne C, Lam SS, Ok YS, Alstrup AKO
    Environ Res, 2020 02;181:108887.
    PMID: 31732170 DOI: 10.1016/j.envres.2019.108887
    The Amazon rainforest has sustained human existence for more than 10,000 years. Part of this has been the way that the forest controls regional climate including precipitation important for the ecosystem as well as agroforestry and farming. In addition, the Amazon also affects the global weather systems, so cutting down the rainforest significantly increases the effects of climate change, threatening the world's biodiversity and causing local desertification and soil erosion. The current fire activities and deforestation in the Amazon rainforest therefore have consequences for global sustainability. In the light of this, the current decisions made in Brazil regarding an increase in Amazon deforestation require policy changes if the global ecosystems and biodiversity are not to be set to collapse. There is only one way to move forward and that is to increase efforts in sustainable development of the region including limitation in deforestation and to continuously measure and monitor the development. The G7 countries have offered Brazil financial support for at least 20 million euros for fighting the forest fires but the president denies receiving such financial support and says that it is more relevant to raise new forests in Europe. In fact, this is exactly what is happening in Denmark and China in order to reduce climate change. Such activities should be global and include South America, Europe, Africa and Asia where deforestation is important issue. Forest restoration reduces climate change, desertification, and preserves both the regional tropical and global environment if the wood is not burned at a later stage but instead used in e.g. roads as filling material. Changes are therefore needed through improved international understanding and agreements to better avoid the global climate changes, from cutting down the precious rainforest before it is too late as rainforest cannot be re-planted.
  14. Ravindiran G, Rajamanickam S, Ramalingam M, Hayder G, Sathaiah BK, Gaddam MKR, et al.
    Environ Res, 2024 Jan 15;241:117551.
    PMID: 37939801 DOI: 10.1016/j.envres.2023.117551
    The present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The current study investigated the removal of toxic metals namely chromium (Cr), nickel (Ni), and zinc (Zn) from aqueous solutions in batch and column studies using biochar produced by the marine algae Ulva reticulata. SEM/EDX, FTIR, and XRD were used to examine the adsorbents' properties and stability. The removal efficiency of toxic metals in batch operations was investigated by varying the parameters, which included pH, biochar dose, initial metal ion concentration, and contact time. Similarly, in the column study, the removal efficiency of heavy metal ions was investigated by varying bed height, flow rate, and initial metal ion concentration. Response Surface Methodology (Central Composite Design (CCD)) was used to confirm the linearity between the observed and estimated values of the adsorption quantity. The packed bed column demonstrated successful removal rates of 90.38% for Cr, 91.23% for Ni, and 89.92% for Zn heavy metals from aqueous solutions, under a controlled environment. The breakthrough analysis also shows that the Thomas and Adams-Bohart models best fit the regression values, allowing prior breakthroughs in the packed bed column to be predicted. Desorption studies were conducted to understand sorption and elution during different regeneration cycles. Adding 0.3 N sulfuric acid over 40 min resulted in the highest desorption rate of the column and adsorbent used for all three metal ions.
  15. Ahmed A, Abu Bakar MS, Hamdani R, Park YK, Lam SS, Sukri RS, et al.
    Environ Res, 2020 07;186:109596.
    PMID: 32361527 DOI: 10.1016/j.envres.2020.109596
    Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.
  16. Thamizharasan A, Rajaguru VRR, Gajalakshmi S, Lim JW, Greff B, Rajagopal R, et al.
    Environ Res, 2024 Feb 15;243:117752.
    PMID: 38008202 DOI: 10.1016/j.envres.2023.117752
    Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
  17. Mirzaei M, Bekri M
    Environ Res, 2017 Apr;154:345-351.
    PMID: 28161426 DOI: 10.1016/j.envres.2017.01.023
    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO2 emission outlines.
  18. Heshammuddin NA, Al-Gheethi A, Saphira Radin Mohamed RM, Bin Khamidun MH
    Environ Res, 2023 Apr 01;222:115316.
    PMID: 36669587 DOI: 10.1016/j.envres.2023.115316
    Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
  19. Chua MX, Cheah YT, Tan WH, Chan DJC
    Environ Res, 2023 May 01;224:115544.
    PMID: 36822535 DOI: 10.1016/j.envres.2023.115544
    Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
  20. Chen WH, Ho KY, Lee KT, Ding L, Andrew Lin KY, Rajendran S, et al.
    Environ Res, 2022 Dec;215(Pt 1):114016.
    PMID: 35977586 DOI: 10.1016/j.envres.2022.114016
    Biochar is a carbon-neutral solid fuel and has emerged as a potential candidate to replace coal. Meanwhile, spent coffee grounds (SCGs) are an abundant and promising biomass waste that could be used for biochar production. This study develops a biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to upgrade SCG biochar. In this dual pretreatment method, the H2O2 oxidative ability at a pretreatment temperature of 105 °C contributes to an increase in the higher heating value (HHV) and carbon content of the SCG biochars. The HHV and carbon content of biochar increase by about 6.5% and 7.8%, respectively, when compared to the unpretreated one under the same conditions. Maximized biochar's HHV derived via the Taguchi method is 30.33 MJkg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs' IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment sufficiently weakens SCGs' molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. For every 1% increase in IOD of TSCG, the carbon content of the biochar increases 0.726%, and the HHV increases 0.529%. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar's calorific value, and torrefied SCGs can be used as a potential solid fuel to approach carbon neutrality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links