Displaying publications 1 - 20 of 223 in total

Abstract:
Sort:
  1. Akhter N, Aqeel M, Shazia, Irshad MK, Shehnaz MM, Lee SS, et al.
    Environ Res, 2024 Apr 15;247:118127.
    PMID: 38220075 DOI: 10.1016/j.envres.2024.118127
    Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.
  2. Virdis SGP, Kongwarakom S, Juneng L, Padedda BM, Shrestha S
    Environ Res, 2024 Apr 15;247:118412.
    PMID: 38316380 DOI: 10.1016/j.envres.2024.118412
    The temperature of surface and epilimnetic waters, closely related to regional air temperatures, responds quickly and directly to climatic changes. As a result, lake surface temperature (LSWT) can be considered an effective indicator of climate change. In this study, we reconstructed and investigated historical and future LSWT across different scenarios for over 80 major lakes in mainland Southeast Asia (SEA), an ecologically diverse region vulnerable to climate impacts. Five different predicting models, incorporating statistical, machine and deep learning approaches, were trained and validated using ERA5 and CHIRPS climatic feature datasets as predictors and 8-day MODIS-derived LSWT from 2000 to 2020 as reference dataset. Best performing model was then applied to predict both historical (1986-2020) and future (2020-2100) LSWT for SEA lakes, utilizing downscaled climatic CORDEX-SEA feature data and multiple Representative Concentration Pathway (RCP). The analysis uncovered historical and future thermal dynamics and long-term trends for both daytime and nighttime LSWT. Among 5 models, XGboost results the most performant (NSE 0.85, RMSE 1.14 °C, MAE 0.69 °C, MBE -0.08 °C) and it has been used for historical reconstruction and future LSWT prediction. The historical analysis revealed a warming trend in SEA lakes, with daytime LSWT increasing at a rate of +0.18 °C/decade and nighttime LSWT at +0.13 °C/decade over the past three decades. These trends appeared of smaller magnitude compared to global estimates of LSWT change rates and less pronounced than concurrent air temperature and LSWT increases in neighbouring regions. Projections under various RCP scenarios indicated continued LSWT warming. Daytime LSWT is projected to increase at varying rates per decade: +0.03 °C under RCP2.6, +0.14 °C under RCP4.5, and +0.29 °C under RCP8.5. Similarly, nighttime LSWT projections under these scenarios are: +0.03 °C, +0.10 °C, and +0.16 °C per decade, respectively. The most optimistic scenario predicted marginal increases of +0.38 °C on average, while the most pessimistic scenario indicated an average LSWT increase of +2.29 °C by end of the century. This study highlights the relevance of LSWT as a climate change indicator in major SEA's freshwater ecosystems. The integration of satellite-derived LSWT, historical and projected climate data into data-driven modelling has enabled new and a more nuanced understanding of LSWT dynamics in relation to climate throughout the entire SEA region.
  3. Abdullah MA, Chuah LF, Zakariya R, Syed A, Hasan RC, Mahmud SM, et al.
    Environ Res, 2024 Apr 10.
    PMID: 38609066 DOI: 10.1016/j.envres.2024.118858
    Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echo sounder (MBES), specifically R2-Sonic 2020, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data study explores multibeam echo sounder (MBES), specifically R2-Sonic 2020, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.
  4. Hussain S, Siddique A, Hassan M, Rasool K, Shahzad A, Asad Naqvi SA, et al.
    Environ Res, 2024 Apr 02;252(Pt 1):118862.
    PMID: 38574984 DOI: 10.1016/j.envres.2024.118862
    The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 μg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.
  5. Almalki ASA, Alhadhrami A, Alsanie WF, Kamarudin SK, Pugazhendhi A
    Environ Res, 2024 Apr 01;246:118060.
    PMID: 38157966 DOI: 10.1016/j.envres.2023.118060
    In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.
  6. Abioye KJ, Harun NY, Sufian S, Yusuf M, Jagaba AH, Waqas S, et al.
    Environ Res, 2024 Apr 01;246:118027.
    PMID: 38159670 DOI: 10.1016/j.envres.2023.118027
    The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
  7. Rawindran H, Khoo KS, Ethiraj B, Lim JW, Liew CS, Goh PS, et al.
    Environ Res, 2024 Mar 16;251(Pt 2):118687.
    PMID: 38493853 DOI: 10.1016/j.envres.2024.118687
    The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.
  8. Kek HY, Tan H, Othman MHD, Nyakuma BB, Ho WS, Sheng DDCV, et al.
    Environ Res, 2024 Mar 15;245:118055.
    PMID: 38154562 DOI: 10.1016/j.envres.2023.118055
    Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.
  9. Ahmad T, Kumar N, Kumar A, Mubashir M, Bokhari A, Paswan BK, et al.
    Environ Res, 2024 Mar 15;245:117960.
    PMID: 38135098 DOI: 10.1016/j.envres.2023.117960
    Carbon capture technologies are becoming increasingly crucial in addressing global climate change issues by lowering CO2 emissions from industrial and power generation activities. Post-combustion carbon capture, which uses membranes instead of adsorbents, has emerged as one of promising and environmentally friendly approaches among these technologies. The operation of membrane technology is based on the premise of selectively separating CO2 from flue gas emissions. This provides a number of different benefits, including improved energy efficiency and decreased costs of operation. Because of its adaptability to changing conditions and its low impact on the surrounding ecosystem, it is an appealing choice for a diverse array of uses. However, there are still issues to be resolved, such as those pertaining to establishing a high selectivity, membrane degradation, and the costs of the necessary materials. In this article, we evaluate and explore the prospective applications and roles of membrane technologies to control climate change by post-combustion carbon capturing. The primary proposition suggests that the utilization of membrane-based carbon capture has the potential to make a substantial impact in mitigating CO2 emissions originating from industrial and power production activities. This is due to its heightened ability to selectively absorb carbon, better efficiency in energy consumption, and its flexibility to various applications. The forthcoming challenges and potential associated with the application of membranes in post-carbon capture are also discussed.
  10. Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB
    Environ Res, 2024 Mar 15;245:118020.
    PMID: 38151149 DOI: 10.1016/j.envres.2023.118020
    Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
  11. Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, et al.
    Environ Res, 2024 Mar 15;245:118025.
    PMID: 38151153 DOI: 10.1016/j.envres.2023.118025
    The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
  12. Han F, Hessen AS, Amari A, Elboughdiri N, Zahmatkesh S
    Environ Res, 2024 Mar 15;245:117972.
    PMID: 38141913 DOI: 10.1016/j.envres.2023.117972
    Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
  13. Zubir MA, Kamyab H, Vasseghian Y, Hashim H, Zhi OM, Abdullah SR, et al.
    Environ Res, 2024 Mar 11;251(Pt 2):118617.
    PMID: 38467362 DOI: 10.1016/j.envres.2024.118617
    This study aims to improve the quality of fuel with high calorific value namely Sfuel - a commercial high-quality refuse-derived fuel (RDF) from hazardous waste via modifying the process design and operating parameters of thermal conversion process. The study analyses key parameters of RDF quality, such as calorific value and heavy metal content, before and after process modifications based on the combination of experimental and simulation using Aspen Plus. In this study, the temperature and pressure of the simulation system are varied from 100 to 700 °C and from 1 to 5 bar, respectively. Findings indicate that there are a total of eleven heavy metals and 179 volatile compounds in the "Sfuels". The quality of the targeted product is greatly improved by the metal evaporation at high temperatures and pressures. However, the calorific value of RDF significantly decreases at 700 °C due to a large amount of the carbon content being evaporated. Although the carbon content at high temperatures is significantly lost, the heat from the vapour stream reactor outlet, which is reused to preheat the nitrogen gas stream supplied to the system, reduces energy consumption while improving the thermal conversion efficiency of the system. Besides, low pressure along with high temperature are not the optimal conditions for quality Sfuels improvement by thermal conversion. Results also indicate that electric heating is more economically efficient than natural gas heating.
  14. Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, et al.
    Environ Res, 2024 Mar 01;244:118000.
    PMID: 38128601 DOI: 10.1016/j.envres.2023.118000
    The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
  15. Chahban M, Akodad M, Skalli A, Gueddari H, El Yousfi Y, Ait Hmeid H, et al.
    Environ Res, 2024 Mar 01;244:117939.
    PMID: 38128604 DOI: 10.1016/j.envres.2023.117939
    The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.
  16. Hussain A, Maitra J, Saifi A, Ahmed S, Ahmed J, Shrestha NK, et al.
    Environ Res, 2024 Mar 01;244:117952.
    PMID: 38113992 DOI: 10.1016/j.envres.2023.117952
    In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
  17. Islam MS, Nur-E-Alam M, Iqbal MA, Khan MB, Mamun SA, Miah MY, et al.
    Environ Res, 2024 Feb 24.
    PMID: 38408626 DOI: 10.1016/j.envres.2024.118551
    Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.
  18. SaberiKamarposhti M, Ng KW, Yadollahi M, Kamyab H, Cheng J, Khorami M
    Environ Res, 2024 Feb 23;250:118528.
    PMID: 38403150 DOI: 10.1016/j.envres.2024.118528
    Agriculture is a leading sector in international initiatives to mitigate climate change and promote sustainability. This article exhaustively examines the removals and emissions of greenhouse gases (GHGs) in the agriculture industry. It also investigates an extensive range of GHG sources, including rice cultivation, enteric fermentation in livestock, and synthetic fertilisers and manure management. This research reveals the complex array of obstacles that are faced in the pursuit of reducing emissions and also investigates novel approaches to tackling them. This encompasses the implementation of monitoring systems powered by artificial intelligence, which have the capacity to fundamentally transform initiatives aimed at reducing emissions. Carbon capture technologies, another area investigated in this study, exhibit potential in further reducing GHGs. Sophisticated technologies, such as precision agriculture and the integration of renewable energy sources, can concurrently mitigate emissions and augment agricultural output. Conservation agriculture and agroforestry, among other sustainable agricultural practices, have the potential to facilitate emission reduction and enhance environmental stewardship. The paper emphasises the significance of financial incentives and policy frameworks that are conducive to the adoption of sustainable technologies and practices. This exhaustive evaluation provides a strategic plan for the agriculture industry to become more environmentally conscious and sustainable. Agriculture can significantly contribute to climate change mitigation and the promotion of a sustainable future by adopting a comprehensive approach that incorporates policy changes, technological advancements, and technological innovations.
  19. Thamizharasan A, Rajaguru VRR, Gajalakshmi S, Lim JW, Greff B, Rajagopal R, et al.
    Environ Res, 2024 Feb 15;243:117752.
    PMID: 38008202 DOI: 10.1016/j.envres.2023.117752
    Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
  20. Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al.
    Environ Res, 2024 Feb 15;243:117840.
    PMID: 38081342 DOI: 10.1016/j.envres.2023.117840
    Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links