Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Bergman K, Henriksson PJG, Hornborg S, Troell M, Borthwick L, Jonell M, et al.
    Environ Sci Technol, 2020 12 15;54(24):16062-16070.
    PMID: 33251804 DOI: 10.1021/acs.est.0c01100
    Seafood is seen as promising for more sustainable diets. The increasing production in land-based closed Recirculating Aquaculture Systems (RASs) has overcome many local environmental challenges with traditional open net-pen systems such as eutrophication. The energy needed to maintain suitable water quality, with associated emissions, has however been seen as challenging from a global perspective. This study uses Life Cycle Assessment (LCA) to investigate the environmental performance and improvement potentials of a commercial RAS farm of tilapia and Clarias in Sweden. The environmental impact categories and indicators considered were freshwater eutrophication, climate change, energy demand, land use, and dependency on animal-source feed inputs per kg of fillet. We found that feed production contributed most to all environmental impacts (between 67 and 98%) except for energy demand for tilapia, contradicting previous findings that farm-level energy use is a driver of environmental pressures. The main improvement potentials include improved by-product utilization and use of a larger proportion of plant-based feed ingredients. Together with further smaller improvement potential identified, this suggests that RASs may play a more important role in a future, environmentally sustainable food system.
  2. Geng X, Haig J, Lin B, Tian C, Zhu S, Cheng Z, et al.
    Environ Sci Technol, 2023 Sep 05;57(35):13067-13078.
    PMID: 37603309 DOI: 10.1021/acs.est.3c03481
    Aerosol black carbon (BC) is a short-lived climate pollutant. The poorly constrained provenance of tropical marine aerosol BC hinders the mechanistic understanding of extreme climate events and oceanic carbon cycling. Here, we collected PM2.5 samples during research cruise NORC2016-10 through South China Sea (SCS) and Northeast Indian Ocean (NEIO) and measured the dual-carbon isotope compositions (δ13C-Δ14C) of BC using hydrogen pyrolysis technique. Aerosol BC exhibits six different δ13C-Δ14C isotopic spaces (i.e., isotope provinces). Liquid fossil fuel combustion, from shipping emissions and adjacent land, is the predominant source of BC over isotope provinces "SCS close to Chinese Mainland" (53.5%), "Malacca Strait" (53.4%), and "Open NEIO" (40.7%). C3 biomass burning is the major contributor to BC over isotope provinces "NEIO close to Southeast Asia" (55.8%), "Open NEIO" (41.3%), and "Open SCS" (40.0%). Coal combustion and C4 biomass burning show higher contributions to BC over "Sunda Strait" and "Open SCS" than the others. Overall, NEIO near the Bay of Bengal, Malacca Strait, and north SCS are three hot spots of fossil fuel-derived BC; the first two areas are also hot spots of biomass-derived BC. The comparable δ13C-Δ14C between BC in aerosol and dissolved BC in surface seawater may suggest atmospheric BC deposition as a potential source of oceanic dissolved BC.
  3. Shuit SH, Lee KT, Kamaruddin AH, Yusup S
    Environ Sci Technol, 2010 Jun 1;44(11):4361-7.
    PMID: 20455588 DOI: 10.1021/es902608v
    Biodiesel from Jatropha curcas L. seed is conventionally produced via a two-step method: extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME), commonly known as biodiesel. Contrarily, in this study, a single step in situ extraction, esterification and transesterification (collectively known as reactive extraction) of J. curcas L. seed to biodiesel, was investigated and optimized. Design of experiments (DOE) was used to study the effect of various process parameters on the yield of FAME. The process parameters studied include reaction temperature (30-60 degrees C), methanol to seed ratio (5-20 mL/g), catalyst loading (5-30 wt %), and reaction time (1-24 h). The optimum reaction condition was then obtained by using response surface methodology (RSM) coupled with central composite design (CCD). Results showed that an optimum biodiesel yield of 98.1% can be obtained under the following reaction conditions: reaction temperature of 60 degrees C, methanol to seed ratio of 10.5 mL/g, 21.8 wt % of H(2)SO(4), and reaction period of 10 h.
  4. Fan X, Matsumoto H, Wang Y, Hu Y, Liu Y, Fang H, et al.
    Environ Sci Technol, 2019 Nov 19;53(22):13042-13052.
    PMID: 31631659 DOI: 10.1021/acs.est.9b04616
    Rice fungal pathogens, responsible for severe rice yield loss and biotoxin contamination, cause increasing concerns on environmental safety and public health. In the paddy environment, we observed that the asymptomatic rice phyllosphere microenvironment was dominated by an indigenous fungus, Aspergillus cvjetkovicii, which positively correlated with alleviated incidence of Magnaporthe oryzae, one of the most aggressive plant pathogens. Through the comparative metabolic profiling for the rice phyllosphere microenvironment, two metabolites were assigned as exclusively enriched metabolic markers in the asymptomatic phyllosphere and increased remarkably in a population-dependent manner with A. cvjetkovicii. These two metabolites evidenced to be produced by A. cvjetkovicii in either a phyllosphere microenvironment or artificial media were purified and identified as 2(3H)-benzofuranone and azulene, respectively, by gas chromatography coupled to triple quadrupole mass spectrometry and nuclear magnetic resonance analyses. Combining with bioassay analysis in vivo and in vitro, we found that 2(3H)-benzofuranone and azulene exerted dissimilar actions at the stage of infection-related development of M. oryzae. A. cvjetkovicii produced 2(3H)-benzofuranone at the early stage to suppress MoPer1 gene expression, leading to inhibited mycelial growth, while azulene produced lately was involved in blocking of appressorium formation by downregulation of MgRac1. More profoundly, the microenvironmental interplay dominated by A. cvjetkovicii significantly blocked M. oryzae epidemics in the paddy environment from 54.7 to 68.5% (p < 0.05). Our study first demonstrated implication of the microenvironmental interplay dominated by indigenous and beneficial fungus to ecological balance and safety of the paddy environment.
  5. Huang Y, Xu Y, Li J, Xu W, Zhang G, Cheng Z, et al.
    Environ Sci Technol, 2013;47(23):13395-403.
    PMID: 24251554 DOI: 10.1021/es403138p
    Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.
  6. Ramu K, Kajiwara N, Sudaryanto A, Isobe T, Takahashi S, Subramanian A, et al.
    Environ Sci Technol, 2007 Jul 01;41(13):4580-6.
    PMID: 17695900
    Mussel samples were used in this study to measure the levels of polybrominated diphenyl ethers (PBDEs) and organochlorines (OCs) in the coastal waters of Asian countries like Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, the Philippines, and Vietnam. PBDEs were detected in all the samples analyzed, and the concentrations ranged from 0.66 to 440 ng/g lipid wt. Apparently higher concentrations of PBDEs were found in mussels from the coastal waters of Korea, Hong Kong, China, and the Philippines, which suggests that significant sources of these chemicals exist in and around this region. With regard to the composition of PBDE congeners, BDE-47, BDE-99, and BDE-100 were the dominant congeners in most of the samples. Among the OCs analyzed, concentrations of DDTs were the highest followed by PCBs > CHLs > HCHs > HCB. Total concentrations of DDTs, PCBs, CHLs, and HCHs in mussel samples ranged from 21 to 58 000, 3.8 to 2000, 0.93 to 900, and 0.90 to 230 ng/g lipid wt., respectively. High levels of DDTs were found in mussels from Hong Kong, Vietnam, and China; PCBs were found in Japan, Hong Kong, and industrialized/urbanized locations in Korea, Indonesia, the Philippines, and India; CHLs were found in Japan and Hong Kong; HCHs were found in India and China. These countries seem to play a role as probable emission sources of corresponding contaminants in Asia and, in turn, may influence their global distribution.
  7. Cao X, Yu ZX, Xie M, Pan K, Tan QG
    Environ Sci Technol, 2023 Jan 17;57(2):1060-1070.
    PMID: 36595456 DOI: 10.1021/acs.est.2c06447
    In coastal waters, particulate metals constitute a substantial fraction of the total metals; however, the prevalent water quality criteria are primarily based on dissolved metals, seemingly neglecting the contribution of particulate metals. Here we developed a method to quantify the toxicity risk of particulate metals, and proposed a way to calculate modifying factors (MFs) for setting site-specific criteria in turbid waters. Specifically, we used a side-by-side experimental design to study copper (Cu) bioaccumulation and toxicity in an estuarine clam, Potamocorbula laevis, under the exposure to "dissolved only" and "dissolved + particulate" 65Cu. A toxicokinetic-toxicodynamic model (TK-TD) was used to quantify the processes of Cu uptake, ingestion, assimilation, egestion, and elimination, and to relate mortality risk to tissue Cu. We find that particulate Cu contributes 40-67% of the Cu bioaccumulation when the suspended particulate matter (SPM) ranges from 12 to 229 mg L-1. The Cu-bearing SPM also increases the sensitivity of organisms to internalized Cu by decreasing the internal threshold concentration (CIT) from 141 to 76.8 μg g-1. MFs were derived based on the TK-TD model to consider the contribution of particulate Cu (in the studied SPM range) for increasing Cu bioaccumulation (MF = 1.3-2.2) and toxicity (MF = 2.3-3.9). Water quality criteria derived from dissolved metal exposure need to be lowered by dividing by an MF to provide adequate protection. Overall, the method we developed provides a scientifically sound framework to manage the risks of metals in turbid waters.
  8. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh le Y, Takada H
    Environ Sci Technol, 2002 Nov 1;36(21):4497-507.
    PMID: 12433157
    This is the first report on fecal pollution using molecular markers in Southeast Asia where serious sewage pollution has occurred. A simple and sensitive analytical method using gas chromatography-mass spectrometry for 10 sterols in various environmental samples was developed to monitor extensive areas of tropical Asia. First, the method was applied to wastewater to confirm that >95% of sterols existed in the particulate phase. Then the approach was applied to a tropical Asian region, Malaysia and Vietnam, with a selection of 59 sampling stations in total. River water and sediment samples were collected and analyzed for chemical markers (coprostanol and other sterols) and microbiological markers (fecal coliforms and fecal streptococci). Particulate coprostanol concentrations ranged from <0.0001 to 13.47 microg/L in tropical river and estuarine waters, indicating severe fecal pollution in populous areas. Coprostanol concentrations in the sediments ranged from 0.005 to 15.5 microg/g-dry. The sedimentary coprostanol concentrations were lower than those reported in some urban areas of industrialized countries. This is probably because frequent heavy rain induces intensive input of eroded soil, which dilutes fecal material in river sediments. The relationship between the concentrations of fecal sterols and bacterial indicators was examined in an attempt to develop public health criteria for coprostanol levels applicable to the tropical region. Coprostanol concentrations of 30-100 ng/L or percent coprostanol levels of 2% corresponded to approximately 1000 fecal coliforms per 100 mL, which is set for secondary contact limit in many countries. These coprostanol concentrations were lower than those proposed as criteria in temperate countries, probably owing to greater survival of bacteria in warmer tropical waters. On the basis of these criteria, extensive monitoring of sediments suggests that poor sanitary conditions exist in most of the urbanized area of Malaysia and in several urban and rural sites in Vietnam.
  9. Schäffer A, Groh KJ, Sigmund G, Azoulay D, Backhaus T, Bertram MG, et al.
    Environ Sci Technol, 2023 Dec 05;57(48):19066-19077.
    PMID: 37943968 DOI: 10.1021/acs.est.3c04213
    Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.
  10. Jaafar MN, Ishak MS, Saharin S
    Environ Sci Technol, 2010 Apr 15;44(8):3111-5.
    PMID: 20345095 DOI: 10.1021/es903606y
    This paper presents the development of an emissions-controlling technique for oil burners aimed especially to reduce oxides of nitrogen (NOx). Another emission of interest is carbon monoxide (CO). In this research, a liquid fuel burner is used. In the first part, five different radial air swirler blade angles, 30 degrees , 40 degrees , 45 degrees , 50 degrees , and 60 degrees , respectively, have been investigated using a combustor with 163 mm inside diameter and 280 mm length. Tests were conducted using kerosene as fuel. Fuel was injected at the back plate of the swirler outlet. The swirler blade angles and equivalence ratios were varied. A NOx reduction of more than 28% and CO emissions reduction of more than 40% were achieved for blade angle of 60 degrees compared to the 30 degrees blade angle. The second part of this paper presents the insertion of an orifice plate at the exit plane of the air swirler outlet. Three different orifice plate diameters of 35, 40, and 45 mm were used with a 45 degrees radial air swirler vane angle. The fuel flow rates and orifice plate's sizes were varied. NOx reduction of more than 30% and CO emissions reduction of more than 25% were obtained using the 25 mm diameter orifice plate compared to the test configuration without the orifice plate. The last part of this paper presents tests conducted using the air-staging method. An industrial oil burner system was investigated using the air staging method in order to reduce emission, especially NOx. Emissions reduction of 30% and 16.7% were obtained for NOx and CO emissions, respectively, when using air staging compared to the non-air-staging tests.
  11. Harumain ZA, Parker HL, Muñoz García A, Austin MJ, McElroy CR, Hunt AJ, et al.
    Environ Sci Technol, 2017 03 07;51(5):2992-3000.
    PMID: 28191957 DOI: 10.1021/acs.est.6b04821
    Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg-1 Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.
  12. Adcock KE, Ashfold MJ, Chou CC, Gooch LJ, Mohd Hanif N, Laube JC, et al.
    Environ Sci Technol, 2020 Apr 07;54(7):3814-3822.
    PMID: 32126759 DOI: 10.1021/acs.est.9b06433
    Recent findings of an unexpected slowdown in the decline of CFC-11 mixing ratios in the atmosphere have led to the conclusion that global CFC-11 emissions have increased over the past decade and have been attributed in part to eastern China. This study independently assesses these findings by evaluating enhancements of CFC-11 mixing ratios in air samples collected in Taiwan between 2014 and 2018. Using the NAME (Numerical Atmospheric Modeling Environment) particle dispersion model, we find the likely source of the enhanced CFC-11 observed in Taiwan to be East China. Other halogenated trace gases were also measured, and there were positive interspecies correlations between CFC-11 and CHCl3, CCl4, HCFC-141b, HCFC-142b, CH2Cl2, and HCFC-22, indicating co-location of the emissions of these compounds. These correlations in combination with published emission estimates of CH2Cl2 and HCFC-22 from China, and of CHCl3 and CCl4 from eastern China, are used to estimate CFC-11 emissions. Within the uncertainties, these estimates do not differ for eastern China and the whole of China, so we combine them to derive a mean estimate that we term as being from "(eastern) China". For 2014-2018, we estimate an emission of 19 ± 5 Gg year-1 (gigagrams per year) of CFC-11 from (eastern) China, approximately one-quarter of global emissions. Comparing this to previously reported CFC-11 emissions estimated for earlier years, we estimate CFC-11 emissions from (eastern) China to have increased by 7 ± 5 Gg year-1 from the 2008-2011 average to the 2014-2018 average, which is 50 ± 40% of the estimated increase in global CFC-11 emissions and is consistent with the emission increases attributed to this region in an earlier study.
  13. Watts MP, Gan HM, Peng LY, Lê Cao KA, Moreau JW
    Environ Sci Technol, 2017 Nov 21;51(22):13353-13362.
    PMID: 29064247 DOI: 10.1021/acs.est.7b04152
    Thiocyanate (SCN-) is a contaminant requiring remediation in gold mine tailings and wastewaters globally. Seepage of SCN--contaminated waters into aquifers can occur from unlined or structurally compromised mine tailings storage facilities. A wide variety of microorganisms are known to be capable of biodegrading SCN-; however, little is known regarding the potential of native microbes for in situ SCN- biodegradation, a remediation option that is less costly than engineered approaches. Here we experimentally characterize the principal biogeochemical barrier to SCN- biodegradation for an autotrophic microbial consortium enriched from mine tailings, to arrive at an environmentally realistic assessment of in situ SCN- biodegradation potential. Upon amendment with phosphate, the consortium completely degraded up to ∼10 mM SCN- to ammonium and sulfate, with some evidence of nitrification of the ammonium to nitrate. Although similarly enriched in known SCN--degrading strains of thiobacilli, this consortium differed in its source (mine tailings) and metabolism (autotrophy) from those of previous studies. Our results provide a proof of concept that phosphate limitation may be the principal barrier to in situ SCN- biodegradation in mine tailing waters and also yield new insights into the microbial ecology of in situ SCN- bioremediation involving autotrophic sulfur-oxidizing bacteria.
  14. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
  15. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2008 Mar 01;42(5):1499-504.
    PMID: 18441794
    The SO2 sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents. The correlation between the sorbent SSC (as response) with four independent sorbent preparation variables, i.e. hydration period, RHA/CaO ratio, NaOH amount, and drying temperature, were presented as empirical mathematical models. Among all the variables studied, the amount of NaOH used was found to be the most significant variable affecting the SSC of the sorbents prepared. The SSC for sorbent prepared with the addition of NaOH was found to be significantly higher than sorbents prepared without NaOH. This is probably because NaOH is a deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, a condition required for sorbent-SO2 reaction to occur at low temperature. The effect of further treatment of RHA at 600 degrees C was also investigated. Although pretreated RHA sorbents demonstrated higher SSC as compared to untreated RHA sorbents, nevertheless, at optimum conditions, sorbents prepared from untreated RHA was found to be more favorable due to practical and economic concerns.
  16. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2006 Oct 01;40(19):6032-7.
    PMID: 17051796
    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.
  17. Motorykin O, Matzke MM, Waters KM, Massey Simonich SL
    Environ Sci Technol, 2013 Apr 2;47(7):3410-6.
    PMID: 23472838 DOI: 10.1021/es305295d
    The objective of this research was to investigate the relationship between lung cancer mortality rates, carcinogenic polycyclic aromatic hydrocarbon (PAH) emissions, and smoking on a global scale, as well as for different socioeconomic country groups. The estimated lung cancer deaths per 100,000 people (ED100000) and age standardized lung cancer death rate per 100,000 people (ASDR100000) in 2004 were regressed on PAH emissions in benzo[a]pyrene equivalence (BaPeq), smoking prevalence, cigarette price, gross domestic product per capita, percentage of people with diabetes, and average body mass index using simple and multiple linear regression for 136 countries. Using stepwise multiple linear regression, a statistically significant positive linear relationship was found between loge(ED100000) and loge(BaPeq) emissions for high (p-value <0.01) and for the combination of upper-middle and high (p-value <0.05) socioeconomic country groups. A similar relationship was found between loge(ASDR100000) and loge(BaPeq) emissions for the combination of upper-middle and high (p-value <0.01) socioeconomic country groups. Conversely, for loge(ED100000) and loge(ASDR100000), smoking prevalence was the only significant independent variable in the low socioeconomic country group (p-value <0.001). These results suggest that reducing BaPeq emissions in the U.S., Canada, Australia, France, Germany, Brazil, South Africa, Poland, Mexico, and Malaysia could reduce ED100000, while reducing smoking prevalence in Democratic People's Republic of Korea, Nepal, Mongolia, Cambodia, and Bangladesh could significantly reduce the ED100000 and ASDR100000.
  18. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, et al.
    Environ Sci Technol, 2002 May 1;36(9):1907-18.
    PMID: 12026970
    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
  19. Tye AM, Young SD, Crout NM, Zhang H, Preston S, Bailey EH, et al.
    Environ Sci Technol, 2002 Mar 1;36(5):982-8.
    PMID: 11924544
    An isotopic dilution assay was developed to measure radiolabile As concentration in a diverse range of soils (pH 3.30-7.62; % C = 1.00-6.55). Soils amended with 50 mg of As kg(-1) (as Na2HAsO4 x 7H2O) were incubated for over 800 d in an aerated "microcosm" experiment. After 818 d, radiolabile As ranged from 27 to 57% of total applied As and showed a pH-dependent increase above pH 6. The radiolabile assay was also applied to three sets of soils historically contaminated with sewage sludge or mine-spoil. Results reflected the various geochemical forms in which the arsenic was present. On soils from a sewage disposal facility, radiolabile arsenate ranged from 3 to 60% of total As; mean lability was lower than in the equivalent pH range of the microcosm soils, suggesting occlusion of As into calcium phosphate compounds in the sludge-amended soils. In soils from mining areas in the U.K. and Malaysia, radiolabile As accounted for 0.44-19% of total As. The lowest levels of lability were associated with extremely large As concentrations, up to 17,000 mg kg(-1), from arsenopyrite. Soil pore water was extracted from the microcosm experiment and speciated using "GEOCHEM". The solid<==>solution equilibria of As in the microcosm soils was described by a simple model based on competition between HAsO4(2-) and HPO4(2-) for "labile" adsorption sites.
  20. Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, et al.
    Environ Sci Technol, 2012 Jun 19;46(12):6860-6.
    PMID: 22620267 DOI: 10.1021/es301334j
    As concern regarding the toxic effects of bisphenol A (BPA) grows, BPA in many consumer products is gradually being replaced with compounds such as bisphenol S (BPS). Nevertheless, data on the occurrence of BPS in human specimens are limited. In this study, 315 urine samples, collected from the general populations in the United States, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, were analyzed for the presence of total BPS (free plus conjugated) concentrations by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). BPS was detected in 81% of the urine samples analyzed at concentrations ranging from below the limit of quantitation (LOQ; 0.02 ng/mL) to 21 ng/mL (geometric mean: 0.168 ng/mL). The urinary BPS concentration varied among countries, and the highest geometric mean concentration [1.18 ng/mLor 0.933 μg/g creatinine (Cre)] of BPS was found in urine samples from Japan, followed by the United States (0.299 ng/mL, 0.304 μg/g Cre), China (0.226 ng/mL, 0.223 μg/g Cre), Kuwait (0.172 ng/mL, 0.126 μg/g Cre), and Vietnam (0.160 ng/mL, 0.148 μg/g Cre). Median concentrations of BPS in urine samples from the Asian countries were 1 order of magnitude lower than the median concentrations reported earlier for BPA in the same set of samples, with the exception of samples from Japan. There were no significant differences in BPS concentrations between genders (male versus female), or among age groups (categorized as ≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), or races (Caucasian versus Asian). The daily intake (EDI) of BPS was estimated on the basis of urinary concentrations using a simple pharmacokinetic approach. The median EDI values of BPS in Japan, China, United States, Kuwait, Vietnam, Malaysia, India, and Korea were 1.67, 0.339, 0.316, 0.292, 0.217, 0.122, 0.084, and 0.023 μg/person, respectively. This is the first study to report the occurrence of BPS in human urine.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links