Displaying publications 1 - 20 of 992 in total

Abstract:
Sort:
  1. Sahoo M, Mohanty PP, Kaushik S, Islam MK, Rourt L
    PMID: 38630401 DOI: 10.1007/s11356-024-33244-7
    The influence of tourism development and economic policy uncertainties on environmental sustainability is substantial. Promoting responsible tourism and using sustainable tourism practises, like offering eco-friendly lodging, is a key part of protecting natural habitats and lowering carbon footprints. Hence, this study tries to examine the relationship between tourism development, economic policy uncertainty, renewable energy, and natural resources on the ecological footprint of India during 1990-2022. This study applies a novel dynamic ARDL simulation approach for long-run and short-run analyses. The study also employs frequency-domain causality to check the causal relationship between the variables. The result reveals that tourism has a positive effect on the ecological footprint. Similarly, economic policy uncertainty has a positive and significant effect on the ecological footprint in India during the sample period. Additionally, natural resource rent shows a positive effect on the ecological footprint or deteriorating environmental quality in the short and long run in the sample period. However, renewable energy consumption indicates a negative effect on the ecological footprint. The results reveal that TDI and EPU have rejected the null hypothesis of no Granger cause in the long, medium, and short term. While renewable energy has a causal relationship with ecological footprints in both the long run and medium run, it is imperative for India to adopt measures that facilitate the advancement of sustainable tourism, with a particular focus on promoting environmentally friendly lodging options, enhancing public transportation systems, and implementing effective waste management strategies.
  2. Ghumman ASM, Shamsuddin R, Qomariyah L, Lim JW, Sami A, Ayoub M
    PMID: 38622423 DOI: 10.1007/s11356-024-33317-7
    Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
  3. Suraparaju SK, Aljaerani HA, Samykano M, Kadirgama K, Noor MM, Natarajan SK
    PMID: 38625473 DOI: 10.1007/s11356-024-33151-x
    Molten salts are the operational fluid for most concentrated solar power (CSP) systems, which has attracted more attention among the scientific community due to the augmentation of their properties with the doping of nanoparticles. Hexagonal boron nitride (h-BN) nanoparticles were dispersed in HITEC molten salt to create a novel nanofluid and evaluate the h-BN nanoparticles' influence on HITEC thermophysical properties. The influence of nanoparticle concentration (0.1, 0.5, and 1wt.%) of h-BN and HITEC was studied in this research. HITEC and nano-enhanced HITEC molten salt (NEHMS) were characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR). Specific heat capacity, latent heat, and melting temperature were assessed using differential scanning calorimetry (DSC). The maximum working temperature was evaluated with thermogravimetric analysis (TGA). The ideal nanoparticle concentration is 0.1 wt.% h-BN, which results in a 27% increase in heat capacity, a 72% increase in latent heat, and a 7% enhancement in thermal stability. The thermal cycling stability test proved the stability of the enhanced thermophysical properties. The material characterization revealed that the samples with improved thermophysical properties have a homogeneous dispersion of nanoparticles with minor nanoparticle agglomeration. The system advisor model (SAM) simulation comparison of the optimum sample with solar salt and HITEC salt revealed that using the optimum sample increases CSP plant efficiency by 0.4% and reduces power costs by 0.13¢/kWh.
  4. Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG
    PMID: 38573576 DOI: 10.1007/s11356-024-33152-w
    Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.
  5. Latif MN, Rahim NSA, Samidin S, Jamal SH, Yusop MR, Isahak WNRW, et al.
    PMID: 38568305 DOI: 10.1007/s11356-024-33060-z
    Hydrogen (H2) represents a promising avenue for reducing carbon emissions in energy systems. However, achieving its widespread adoption requires more effective and scalable synthesis methods. Herein, we investigated the isothermal carburization process of the MoO3 catalyst. This reaction was carried out at a constant temperature of 700 °C in a 60% CO/He stream, with hold reaction times varying (60-min, 90-min, and 120-min). This investigation was conducted using a micro-reactor Autochem with the aim of enhancing the yield of H2. The study focused on evaluating the chemical reduction and carburization behavior of the MoO3 catalyst through X-ray diffraction (XRD), transmission electron microscopy (TEM), and CHNS elemental analysis. The XRD analysis revealed the formation of carbides, Mo2C, and MoO2, serving as active sites for subsequent H2 production in the thermochemical water splitting (TWS) process. The carburization at a 60-min hold time exhibited enhanced H2 production, generating approximately ~ 6.60 µmol of H2 with a yield of up to ~ 32.90% and a conversion rate of ~ 54.83%. This finding emphasizes the essential role played by the formation of carbides, particularly Mo2C, in the carburization process, contributing significantly to the facilitation of H2 production. These carbides serve as exceptionally active catalytic sites that actively promote the generation of hydrogen. This study underscores that the optimized duration of catalyst exposure is a key factor influencing the successful carburization of MoO3 catalysts. This emphasizes how important carbide species are to increasing H2 efficiency. Additionally, it is noted that carbon formation on the MoO3 active sites can act as a potential poison to the catalysts, leading to rapid deactivation after prolonged exposure to the CO precursor.
  6. Hassan A, Hamid FS, Pariatamby A, Ossai IC, Ahmed A, Barasarathi J, et al.
    PMID: 38561536 DOI: 10.1007/s11356-024-33018-1
    The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.
  7. Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(16):23647-23663.
    PMID: 38427169 DOI: 10.1007/s11356-024-32637-y
    Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
  8. M KS, Alengaram UJ, Ibrahim S, Vello V, Phang SM
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25538-25558.
    PMID: 38478311 DOI: 10.1007/s11356-024-32784-2
    This study investigated the potential use of microalgae as partial cement replacement to heal cracks in cement mortar. Microbially induced calcite (CaCO3) precipitation (MICP) from Arthrospira platensis (A. platensis) (UMACC162) was utilised for crack-healing applications. Microalgae was cultivated in Kosaric Media (KM) together with filtered cement water (FCW), and used as a cement replacement material. The microalgal species was further evaluated for its capacity and adaptability towards large-scale culturing. The results showed that A. platensis could adapt and survive in cement water solution and cement mortar, suggesting the potential for self-healing in cement mortar. Further, the cultured species grown in both conditions (KM and KM & FCW) were harvested and incorporated into the cement mortar as a partial cement replacement material at different levels of 5%, 10%, 20%, and 30% of cement weight. The cement mortars partially replaced with microalgae were cured in water for 28 days. Pre-cracks were induced in the cured mortar with the 75% of their ultimate load. It took just 14 days for the microalgae-incorporated mortar to heal the cracks. The specimens with microalgae cultured in FCW showed a better performance and recovered 59% of their strength, with a maximum healed crack width of 0.7 mm. In terms of water tightness and porosity, they are comparable to the control mortar. The compressive strength measurements indicated the formation of calcite aggregate (crystal) that sealed the surface cracks, which was confirmed by a microstructural analysis. The results also demonstrate that the incorporation of microalgae into cement produced a self-healing effect, providing a new direction for crack healing. Additionally, the investigation indicated that replacing cement with microalgae reduced CO2 emissions by as much as 30%, with a substitution of 30% of microalgae. Exploring microalgae as a cement replacement could reduce carbon emissions and improve the state of the environment.
  9. Hasan M, Hassan L, Abdullah Al M, Kamal AHM, Idris MH, Hoque MZ, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25329-25341.
    PMID: 38468013 DOI: 10.1007/s11356-024-32792-2
    Mangroves provide essential ecosystem services including coastal protection by acting as coastal greenbelts; however, human-driven anthropogenic activities altered their existence and ecosystem functions worldwide. In this study, the successive degradation of the second largest mangrove forest, Chakaria Sundarbans situated at the northern Bay of Bengal part of Bangladesh was assessed using remote sensing approaches. A total of five multi-temporal Landsat satellite imageries were collected and used to observe the land use land cover (LULC) changes over the time periods for the years 1972, 1990, 2000, 2010, and 2020. Further, the supervised classification technique with the help of support vector machine (SVM) algorithm in ArcGIS 10.8 was used to process images. Our results revealed a drastic change of Chakaria Sundarbans mangrove forest, that the images of 1972 were comprised of mudflat, waterbody, and mangroves, while the images of 1990, 2000, 2010, and 2020 were classified as waterbody, mangrove, saltpan, and shrimp farm. Most importantly, mangrove forest was the largest covering area a total of 64.2% in 1972, but gradually decreased to 12.7%, 6.4%, 1.9%, and 4.6% for the years 1990, 2000, 2010, and 2020, respectively. Interestingly, the rate of mangrove forest area degradation was similar to the net increase of saltpan and shrimp farms. The kappa coefficients of classified images were 0.83, 0.87, 0.80, 0.87, and 0.91 with the overall accuracy of 88.9%, 90%, 85%, 90%, and 93.3% for the years 1972, 1990, 2000, 2010, and 2020, respectively. By analyzing normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and transformed difference vegetation index (TDVI), our results validated that green vegetated area was decreased alarmingly with time in this study area. This destruction was mainly related to active human-driven anthropogenic activities, particularly creating embankments for fish farms or salt productions, and cutting for collection of wood as well. Together all, our results provide clear evidence of active anthropogenic stress on coastal ecosystem health by altering mangrove forest to saltpan and shrimp farm saying goodbye to the second largest mangrove forest in one of the coastal areas of the Bay of Bengal, Bangladesh.
  10. Zakka WP, Lim NHAS, Khun MC, Samadi M, Aluko O, Odubela C
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25129-25146.
    PMID: 38468004 DOI: 10.1007/s11356-024-32786-0
    Every structure might be exposed to fire at some point in its lifecycle. The ability of geopolymer composites to withstand the effects of fire damage early before it is put out is of great importance. This study examined the effects of fire on geopolymer composite samples made with high-calcium fly ash and alkaline solution synthesised from waste banana peduncle and silica fume. A ratio of 0.30, 0.35, and 0.4 was used in the study for the alkaline solution to fly ash. Also used were ratios of 0.5, 0.75, and 1 for silica oxide (silica fume) to potassium hydroxide ratio. The strength loss, residual compressive strength, percentage strength loss, relative residual compressive strength, ultrasonic pulse velocity, and microstructural properties of the thirteen mortar mixes were measured after exposure to temperatures of 200, 400, 600, and 800 °C for 1 h, respectively. The results reveal that geopolymer samples exposed to elevated temperatures showed great dimensional stability with no visible surface cracks. There was a colour transition from dark grey to whitish brown for the green geopolymer mortar and brown to whitish brown for the control sample. As the temperature rose, weight loss became more pronounced, with 800 °C producing the most significant weight reduction. The optimum mixes had a residual compressive strength of 25.02 MPa after being exposed to 200 °C, 18.72 MPa after being exposed to 400 °C, 14.04 MPa after being exposed to 600 °C, and 7.41 MPa after being exposed to 800 °C. The control had a residual compressive strength of 8.45 MPa after being exposed to 200 °C, 6.67 MPa after being exposed to 400 °C, 3.16 MPa after being exposed to 600 °C, and 2.23 MPa after being exposed to 800 °C. The relative residual compressive strength decreases for green geopolymer mortar are most significant at 600 and 800 °C, with an average decrease of 0.47 and 0.30, respectively. The microstructure of the samples revealed various phase changes and new product formations as the temperature increased.
  11. Qutob M, Alshehri S, Shakeel F, Alam P, Rafatullah M
    PMID: 38546921 DOI: 10.1007/s11356-024-33040-3
    The advanced oxidation process (AOP) is an efficient method to treat recalcitrance pollutants such as pharmaceutical compounds. The essential physicochemical factors in AOP experiments significantly influence the efficiency, speed, cost, and safety of byproducts of the treatment process. In this review, we collected recent articles that investigated the elimination of pharmaceutical compounds by various AOP systems in a water medium, and then we provide an overview of AOP systems, the formation mechanisms of active radicals or reactive oxygen species (ROS), and their detection methods. Then, we discussed the role of the main physicochemical parameters (pH, chemical interference, temperature, catalyst, pollutant concentration, and oxidant concentration) in a critical way. We gained insight into the most frequent scenarios for the proper and improper physicochemical parameters for the degradation of pharmaceutical compounds. Also, we mentioned the main factors that restrict the application of AOP systems in a commercial way. We demonstrated that a proper adjustment of AOP experimental parameters resulted in promoting the treatment performance, decreasing the treatment cost and the treatment operation time, increasing the safeness of the system products, and improving the reaction stoichiometric efficiency. The outcomes of this review will be beneficial for future AOP applicants to improve the pharmaceutical compound treatment by providing a deeper understanding of the role of the parameters. In addition, the proper application of physicochemical parameters in AOP systems acts to track the sustainable development goals (SDGs).
  12. Bala GA, Bery AA, Gnapragasan J, Akingboye AS
    PMID: 38532213 DOI: 10.1007/s11356-024-32867-0
    The significance of resistivity-chargeability relationships has been acknowledged and applied in various geologic terrains and different environmental conditions. However, there remains an underexplored opportunity to fully utilize these methods in complex geological terrains with a mixture of granitic and sedimentary rocks where empirical relationships have not been established. Such discoveries are crucial for accurately delineating petrophysical and geomechanical properties, which are essential in addressing urgent environmental concerns like landslides, foundation collapse, groundwater shortages, and pollution. To address this research gap, a novel approach was employed: resistivity-chargeability data with simple linear regression modeling. The study focused on developing resistivity-chargeability relationships specifically tailored for tropical granitic environments, using a typical example from Kedah Langkawi, Malaysia. The regions are characterized by complex geological features, ruggedness, and irregular progressive weathering and fracturing of subsurface strata, making the task challenging. Despite these complexities, the study successfully derived an efficient resistivity-chargeability empirical relation that correlates resistivity and chargeability. The derived empirical relationship exhibited high accuracy, surpassing 87%, in predicting chargeability from resistivity datasets or vice versa. This achievement holds great promise in promptly and accurately addressing environmental issues specific to the target region under study. By utilizing this novel resistivity-chargeability relationship, geoscientists, engineers, and environmental practitioners can make informed decisions and effectively manage environmental challenges in these regions, especially during the pre-development stage.
  13. Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, et al.
    PMID: 38526713 DOI: 10.1007/s11356-024-33002-9
    The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
  14. Ahmadipour M, Ardani MR, Sarafbidabad M, Missaoui N, Satgunam M, Singh R, et al.
    PMID: 38514592 DOI: 10.1007/s11356-024-32977-9
    The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.
  15. Dogan E, Mohammed KS, Khan Z, Binsaeed RH
    PMID: 38517628 DOI: 10.1007/s11356-024-32765-5
    Environmental sustainability is a key target to achieve sustainable development goals (SDGs). However, achieving these targets needs tools to pave the way for achieving SDGs and COP28 targets. Therefore, the primary objective of the present study is to examine the significance of clean energy, research and development spending, technological innovation, income, and human capital in achieving environmental sustainability in the USA from 1990 to 2022. The study employed time series econometric methods to estimate the empirical results. The study confirmed the long-run cointegrating relationship among CO2 emissions, human capital, income, R&D, technological innovation, and clean energy. The results are statistically significant in the short run except for R&D expenditures. In the long run, the study found that income and human capital contribute to further aggravating the environment via increasing CO2 emissions. However, R&D expenditures, technological innovation, and clean energy help to promote environmental sustainability by limiting carbon emissions. The study recommends investment in technological innovation, clean energy, and increasing R&D expenditures to achieve environmental sustainability in the USA.
  16. Za'abar F', Doroody C, Soudagar MEM, Chelvanathan P, Abdullah WSW, Zuhd AWM, et al.
    PMID: 38512568 DOI: 10.1007/s11356-024-32938-2
    The critical impact of sodium-doped molybdenum (MoNa) in shaping the MoSe2 interfacial layer, influencing the electrical properties of CIGSe/Mo heterostructures, and achieving optimal MoSe2 formation conditions, leading to improved hetero-contact quality. Notably, samples with a 600-nm-thick MoNa layer demonstrate the highest resistivity (73 μΩcm) and sheet resistance (0.45 Ω/square), highlighting the substantial impact of MoNa layer thickness on electrical conductivity. Controlled sodium diffusion through MoNa layers is essential for achieving desirable electrical characteristics, influencing Na diffusion rates, grain sizes, and overall morphology, as elucidated by EDX and FESEM analyses. Additionally, XRD results provide insights into the spontaneous peeling-off phenomenon, with the sample featuring a ~ 600-nm MoNa layer displaying the strongest diffraction peak and the largest crystal size, indicative of enhanced Mo to MoSe2 conversion facilitated by sodium presence. Raman spectra further confirm the presence of MoSe2, with its thickness correlating with MoNa layer thickness. The observed increase in resistance and decrease in conductivity with rising MoSe2 layer thickness underscore the critical importance of optimal MoSe2 formation for transitioning from Schottky to ohmic contact in CIGSe/Mo heterostructures. Ultimately, significant factors to the advancement of CIGSe thin-film solar cell production are discussed, providing nuanced insights into the interplay of MoNa and MoSe2, elucidating their collective impact on the electrical characteristics of CIGSe/Mo heterostructures.
  17. Abdul-Wahab D, Asare EA, Wahi R, Ngaini Z, Klutse NAB, Asamoah A
    PMID: 38503949 DOI: 10.1007/s11356-024-32942-6
    This research provides a comprehensive analysis of groundwater pollution in the Lower Anayari Catchment (LAC) through δ2H and δ18O isotopic analysis, along with positive matrix factorization (PMF) and PCS-MLR receptor models. Forty groundwater samples were collected from hand-dug wells and equipped boreholes across the LAC. Flame photometry for Na+ and K+, complexometric titration for Ca2+, ion chromatography for Cl-, F-, NO3-, SO42-, and PO43-, and atomic absorption spectrometry for Mg2+, Fe, Pb, Cd, As, and Ni were analytical techniques/instruments employed. In regard to cations, Na+ has the highest average concentration of 63.0 mg/L, while Mg2+ has the lowest at 2.58 mg/L. Concerning the anions and nutrients, Cl- has the highest mean concentration of 18.7 mg/L, and Fl- has the lowest at 0.50 mg/L. Metalloids were detected in trace amount with Fe displaying the highest mean concentration of 0.077 mg/L whereas Cd and As recorded lowest (0.001 mg/L). The average values for groundwater δ18O and δ2H were - 3.64‰ and - 20.7‰, respectively; the average values for rainwater isotopic composition were - 3.41‰ for δ18O and - 17.4‰ for δ2H. It is believed that natural geological features, particularly biotite granitoid and volcanic flow/subvolcanic rocks from the Birimian Supergroup, significantly influence groundwater mineralisation. Additionally, the impact of anthropogenic activities on water quality, with urban development and agricultural practices, may be attributed to increasing levels of certain contaminants such as Fe, Ni, NO3-, and PO43-. This research contributes to the broader field of hydrological study and provides practical implications for managing and conserving water resources in similar contexts. The innovative combination of isotopic and statistical analyses sets a new standard for future studies in groundwater quality assessment, emphasising the need for comprehensive approaches that consider both geological characteristics and human impacts for sustainable water resource management.
  18. Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, et al.
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16629-16641.
    PMID: 38321283 DOI: 10.1007/s11356-024-32261-w
    In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links