Displaying publications 1 - 20 of 980 in total

Abstract:
Sort:
  1. Bala GA, Bery AA, Gnapragasan J, Akingboye AS
    PMID: 38532213 DOI: 10.1007/s11356-024-32867-0
    The significance of resistivity-chargeability relationships has been acknowledged and applied in various geologic terrains and different environmental conditions. However, there remains an underexplored opportunity to fully utilize these methods in complex geological terrains with a mixture of granitic and sedimentary rocks where empirical relationships have not been established. Such discoveries are crucial for accurately delineating petrophysical and geomechanical properties, which are essential in addressing urgent environmental concerns like landslides, foundation collapse, groundwater shortages, and pollution. To address this research gap, a novel approach was employed: resistivity-chargeability data with simple linear regression modeling. The study focused on developing resistivity-chargeability relationships specifically tailored for tropical granitic environments, using a typical example from Kedah Langkawi, Malaysia. The regions are characterized by complex geological features, ruggedness, and irregular progressive weathering and fracturing of subsurface strata, making the task challenging. Despite these complexities, the study successfully derived an efficient resistivity-chargeability empirical relation that correlates resistivity and chargeability. The derived empirical relationship exhibited high accuracy, surpassing 87%, in predicting chargeability from resistivity datasets or vice versa. This achievement holds great promise in promptly and accurately addressing environmental issues specific to the target region under study. By utilizing this novel resistivity-chargeability relationship, geoscientists, engineers, and environmental practitioners can make informed decisions and effectively manage environmental challenges in these regions, especially during the pre-development stage.
  2. Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, et al.
    PMID: 38526713 DOI: 10.1007/s11356-024-33002-9
    The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
  3. Ahmadipour M, Ardani MR, Sarafbidabad M, Missaoui N, Satgunam M, Singh R, et al.
    PMID: 38514592 DOI: 10.1007/s11356-024-32977-9
    The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.
  4. Dogan E, Mohammed KS, Khan Z, Binsaeed RH
    PMID: 38517628 DOI: 10.1007/s11356-024-32765-5
    Environmental sustainability is a key target to achieve sustainable development goals (SDGs). However, achieving these targets needs tools to pave the way for achieving SDGs and COP28 targets. Therefore, the primary objective of the present study is to examine the significance of clean energy, research and development spending, technological innovation, income, and human capital in achieving environmental sustainability in the USA from 1990 to 2022. The study employed time series econometric methods to estimate the empirical results. The study confirmed the long-run cointegrating relationship among CO2 emissions, human capital, income, R&D, technological innovation, and clean energy. The results are statistically significant in the short run except for R&D expenditures. In the long run, the study found that income and human capital contribute to further aggravating the environment via increasing CO2 emissions. However, R&D expenditures, technological innovation, and clean energy help to promote environmental sustainability by limiting carbon emissions. The study recommends investment in technological innovation, clean energy, and increasing R&D expenditures to achieve environmental sustainability in the USA.
  5. Za'abar F', Doroody C, Soudagar MEM, Chelvanathan P, Abdullah WSW, Zuhd AWM, et al.
    PMID: 38512568 DOI: 10.1007/s11356-024-32938-2
    The critical impact of sodium-doped molybdenum (MoNa) in shaping the MoSe2 interfacial layer, influencing the electrical properties of CIGSe/Mo heterostructures, and achieving optimal MoSe2 formation conditions, leading to improved hetero-contact quality. Notably, samples with a 600-nm-thick MoNa layer demonstrate the highest resistivity (73 μΩcm) and sheet resistance (0.45 Ω/square), highlighting the substantial impact of MoNa layer thickness on electrical conductivity. Controlled sodium diffusion through MoNa layers is essential for achieving desirable electrical characteristics, influencing Na diffusion rates, grain sizes, and overall morphology, as elucidated by EDX and FESEM analyses. Additionally, XRD results provide insights into the spontaneous peeling-off phenomenon, with the sample featuring a ~ 600-nm MoNa layer displaying the strongest diffraction peak and the largest crystal size, indicative of enhanced Mo to MoSe2 conversion facilitated by sodium presence. Raman spectra further confirm the presence of MoSe2, with its thickness correlating with MoNa layer thickness. The observed increase in resistance and decrease in conductivity with rising MoSe2 layer thickness underscore the critical importance of optimal MoSe2 formation for transitioning from Schottky to ohmic contact in CIGSe/Mo heterostructures. Ultimately, significant factors to the advancement of CIGSe thin-film solar cell production are discussed, providing nuanced insights into the interplay of MoNa and MoSe2, elucidating their collective impact on the electrical characteristics of CIGSe/Mo heterostructures.
  6. Abdul-Wahab D, Asare EA, Wahi R, Ngaini Z, Klutse NAB, Asamoah A
    PMID: 38503949 DOI: 10.1007/s11356-024-32942-6
    This research provides a comprehensive analysis of groundwater pollution in the Lower Anayari Catchment (LAC) through δ2H and δ18O isotopic analysis, along with positive matrix factorization (PMF) and PCS-MLR receptor models. Forty groundwater samples were collected from hand-dug wells and equipped boreholes across the LAC. Flame photometry for Na+ and K+, complexometric titration for Ca2+, ion chromatography for Cl-, F-, NO3-, SO42-, and PO43-, and atomic absorption spectrometry for Mg2+, Fe, Pb, Cd, As, and Ni were analytical techniques/instruments employed. In regard to cations, Na+ has the highest average concentration of 63.0 mg/L, while Mg2+ has the lowest at 2.58 mg/L. Concerning the anions and nutrients, Cl- has the highest mean concentration of 18.7 mg/L, and Fl- has the lowest at 0.50 mg/L. Metalloids were detected in trace amount with Fe displaying the highest mean concentration of 0.077 mg/L whereas Cd and As recorded lowest (0.001 mg/L). The average values for groundwater δ18O and δ2H were - 3.64‰ and - 20.7‰, respectively; the average values for rainwater isotopic composition were - 3.41‰ for δ18O and - 17.4‰ for δ2H. It is believed that natural geological features, particularly biotite granitoid and volcanic flow/subvolcanic rocks from the Birimian Supergroup, significantly influence groundwater mineralisation. Additionally, the impact of anthropogenic activities on water quality, with urban development and agricultural practices, may be attributed to increasing levels of certain contaminants such as Fe, Ni, NO3-, and PO43-. This research contributes to the broader field of hydrological study and provides practical implications for managing and conserving water resources in similar contexts. The innovative combination of isotopic and statistical analyses sets a new standard for future studies in groundwater quality assessment, emphasising the need for comprehensive approaches that consider both geological characteristics and human impacts for sustainable water resource management.
  7. Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    PMID: 38427169 DOI: 10.1007/s11356-024-32637-y
    Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
  8. Daub NA, Aziz F, Mhamad SA, Chee DNA, Jaafar J, Yusof N, et al.
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16629-16641.
    PMID: 38321283 DOI: 10.1007/s11356-024-32261-w
    In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.
  9. Jamion NA, Lee KE, Mokhtar M, Goh TL
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16291-16308.
    PMID: 38315340 DOI: 10.1007/s11356-024-32140-4
    Ex-mining lake-converted constructed wetlands play a significant role in the carbon cycle, offering a great potential to sequester carbon and mitigate climate change and global warming. Investigating the quantity of carbon storage capacity of ex-mining lake-converted constructed wetlands provides information and justification for restoration and conservation efforts. The present study aims to quantify the carbon pool of the ex-mining lake-converted constructed wetlands and characterise the physicochemical properties of the soil and sediment. Pearson's correlation and a one-way ANOVA were performed to compare the different sampling stations at Paya Indah Wetland, Selangor, Malaysia. An analysis of 23 years of ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia, revealed that the estimated total carbon pool in soil and sediment accumulated to 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), which translates to an annual carbon sink capacity of around 67.5 Mg C ha-1 year-1. The characterisation showed that the texture of all soil samples was dominated by silt, whereas sediments exhibited texture heterogeneity. Although the pH of the soil and sediment was both acidic, the bulk density was still optimal for plant growth and did not affect root growth. FT-IR and WDXRF results supported that besides the accumulation and degradation of organic substances, which increase the soil and sediment carbon content, mineral carbonation is a mechanism by which soil and sediment can store carbon. Therefore, this study indicates that the ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia have a significant carbon storage potential.
  10. Zakaria DS, Rozi SKM, Halim HNA, Mohamad S, Zheng GK
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16309-16327.
    PMID: 38315341 DOI: 10.1007/s11356-024-32285-2
    Climate change caused by the greenhouse gases CO2 remains a topic of global concern. To mitigate the excessive levels of anthrophonic CO2 in the atmosphere, CO2 capture methods have been developed and among these, adsorption is an especially promising method. This paper presents a series of amine functionalized biochar obtained from desiccated coconut waste (amine-biochar@DCW) for use as CO2 adsorbent. They are ethylenediamine-functionalized biochar@DCW (EDA-biochar@DCW), diethylenetriamine-functionalized biochar@DCW (DETA-biochar@DCW), triethylenetetramine-functionalized biochar@DCW (TETA-biochar@DCW), tetraethylenepentamine-functionalized biochar@DCW (TEPA-biochar@DCW), and pentaethylenehexamine-functionalized biochar@DCW (PEHA-biochar@DCW). The adsorbents were obtained through amine functionalization of biochar and they are characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The CO2 adsorption study was conducted isothermally and using a thermogravimetric analyzer. From the results of the characterization analyses, a series of amine-biochar@DCW adsorbents had larger specific surface area in the range of 16.2 m2/g-37.1 m2/g as compare to surface area of pristine DCW (1.34 m2/g). Furthermore, the results showed an increase in C and N contents as well as the appearance of NH stretching, NH bending, CN stretching, and CN bending, suggesting the presence of amine on the surface of biochar@DCW. The CO2 adsorption experiment shows that among the amine modified biochar adsorbents, TETA-biochar@DCW has the highest CO2 adsorption capacity (61.78 mg/g) when using a mass ratio (m:m) of biochar@DCW:TETA (1:2). The adsorption kinetics on the TETA-biochar@DCW was best fitted by the pseudo-second model (R2 = 0.9998), suggesting the adsorption process occurs through chemisorption. Additionally, TETA-biochar@DCW was found to have high selectivity toward CO2 gas and good reusability even after five CO2 adsorption-desorption cycles. The results demonstrate the potential of novel CO2 adsorbents based on amine functionalized on desiccated coconut waste biochar.
  11. Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16940-16957.
    PMID: 38326685 DOI: 10.1007/s11356-024-32323-z
    The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.
  12. Ben Abdallah A, Becha H, Sharif A, Bashir MF
    Environ Sci Pollut Res Int, 2024 Mar;31(14):21935-21946.
    PMID: 38400971 DOI: 10.1007/s11356-024-32565-x
    The rapid rise in climate and ecological challenges have allowed policymakers to introduce stringent environmental policies. In addition, financial limitations may pose challenges for countries looking to green energy investments as energy transition is associated with geopolitical risks that could create uncertainty and dissuade green energy investments. The current study uses PTR and PSTR as econometric strategy to investigate how geopolitical risks and financial development indicators influence energy transition in selected industrial economies. Our findings indicate a non-linear DCPB-RE relationship with a threshold equal to 39.361 in PTR model and 35.605 and 122.35 in PSTR model. Additionally, when the threshold was estimated above, financial development indicators and geopolitical risk positively impacts renewable energy. This confirms that these economies operate within a geopolitical context, with the objective of investing more in clean energy. We report novel policy suggestion to encourage policymakers promoting energy transition and advance the sustainable financing development and ecological sustainability.
  13. Chu KH, Hashim MA
    Environ Sci Pollut Res Int, 2024 Mar;31(14):21136-21143.
    PMID: 38386161 DOI: 10.1007/s11356-024-32450-7
    The Yoon-Nelson model serves as a widely used tool for describing the breakthrough behavior of organic micropollutants within fixed bed adsorbers. This study aims to augment its modeling efficacy through two proposed refinements found in the literature: a logarithmic transformation and the incorporation of steric hindrance effects. We systematically evaluated the original Yoon-Nelson model alongside the modified versions, using breakthrough data associated with micropollutant adsorption on solid materials. Three distinct cases were scrutinized: (1) caffeine adsorption on activated carbon; (2) tetracycline adsorption on hierarchical porous carbon; and (3) diclofenac adsorption on organoclay. While all three models demonstrated comparable performance with highly symmetric breakthrough data in case 1, their efficacy diverged significantly when confronted with strongly asymmetric breakthrough data in cases 2 and 3. The original Yoon-Nelson model and the logarithmically modified version fell short in accurately representing these intricate breakthrough curves. In contrast, the version incorporating steric hindrance effects showcased substantial accuracy, outperforming other models in capturing the complexities of asymmetric breakthrough data. This advancement markedly enhances the modeling accuracy and versatility of the Yoon-Nelson model, particularly in assessing the dynamic behavior of organic micropollutants within fixed bed adsorbers.
  14. Abd Rahman NN, Mazlan N, Shukhairi SS, Nazahuddin MNA, Shawel AS, Harun H, et al.
    PMID: 38418781 DOI: 10.1007/s11356-024-32628-z
    Microplastics (MPs) are a pervasive pollutant in the marine environment. Pantai Teluk Likas in Sabah, Malaysia is one of the most visited beaches where tourism, recreational, and fisheries activities are high in this area. Hence, the area suffers from severe pollution, particularly from plastics. This study aims to quantify the microplastic composition in terms of color, shapes, and polymer types in marine bivalves (Anadara granosa, Glauconome virens, and Meretrix lyrata) and water column samples from Pantai Teluk Likas. All samples were digested using sodium hydroxide (NaOH) and incubated in the oven for at least 48 h. Serial filtration was done for each sample before they were observed under the dissecting microscope. The microplastics were identified and counted based on their physical attributes which were colors and shapes. The functional group of the polymers was determined using FTIR spectroscopy. Microplastics were found present in all samples collected. G. virens had the highest abundance of microplastics at 113.6 ± 6.5 particles/g followed by M. lyrata at 78.4 ± 3.7 particles/g. On the contrary, A. granosa had the least microplastics with an abundance of 24.4 ± 0.6 particles/g. Meanwhile, 110.0 ± 36.2 particles/L of microplastics were found in water column samples from Pantai Teluk Likas. Based on the analysis, fibers were the most common shape in bivalves, while fibers and films were common in the water column. In terms of colors, black, blue, and red were a few of the most abundant colors observed in both samples. The most common polymer detected in all bivalve species and water column samples is polycarbonate (PC), followed by polymethyl methacrylate (PMMA). Future study that focuses on the correlation between microplastic abundance in the marine biota and the water column is recommended to better understand microplastic availability and exposure.
  15. Ling JYX, Chan YJ, Chen JW, Chong DJS, Tan ALL, Arumugasamy SK, et al.
    PMID: 38376778 DOI: 10.1007/s11356-024-32435-6
    Biogas plant operators often face huge challenges in the monitoring, controlling and optimisation of the anaerobic digestion (AD) process, as it is very sensitive to surrounding changes, which often leads to process failure and adversely affects biogas production. Conventional implemented methods and mechanistic models are impractical and find it difficult to model the nonlinear and intricate interactions of the AD process. Thus, the development of machine learning (ML) algorithms has attracted considerable interest in the areas of process optimization, real-time monitoring, perturbation detection and parameter prediction. This paper provides a comprehensive and up-to-date overview of different machine learning algorithms, including artificial neural network (ANN), fuzzy logic (FL), adaptive network-based fuzzy inference system (ANFIS), support vector machine (SVM), genetic algorithm (GA) and particle swarm optimization (PSO) in terms of working mechanism, structure, advantages and disadvantages, as well as their prediction performances in modelling the biogas production. A few recent case studies of their applications and limitations are also critically reviewed and compared, providing useful information and recommendation in the selection and application of different ML algorithms. This review shows that the prediction efficiency of different ML algorithms is greatly impacted by variations in the reactor configurations, operating conditions, influent characteristics, selection of input parameters and network architectures. It is recommended to incorporate mixed liquor volatile suspended solids (MLVSS) concentration of the anaerobic digester (ranging from 16,500 to 46,700 mg/L) as one of the input parameters to improve the prediction efficiency of ML modelling. This review also shows that the combination of different ML algorithms (i.e. hybrid GA-ANN model) could yield better accuracy with higher R2 (0.9986) than conventional algorithms and could improve the optimization model of AD. Besides, future works could be focused on the incorporation of an integrated digital twin system coupled with ML techniques into the existing Supervisory Control and Data Acquisition (SCADA) system of any biogas plant to detect any operational abnormalities and prevent digester upsets.
  16. Khan MN, Shahbaz M, Murshed M, Khan S, Hosen M
    PMID: 38372919 DOI: 10.1007/s11356-024-32276-3
    Sub-Saharan African nations face multifaceted environmental problems, especially those associated with carbon discharges. Hence, this study calculates a composite carbon index in the context of 39 developing nations from this region and uses it as a proxy for the carbon emission-related environmental problems they have faced during the 2000-2020 period. This index is estimated by utilizing data regarding annual carbon dioxide discharges, output-based carbon productivity rates, and energy consumption-based carbon intensity levels in the concerned countries. Hence, policy takeaways from this study have critical relevance for the selected sub-Saharan African nations to help them achieve the objectives related to the Sustainable Development Goals agenda and the Paris Accord. Overall, the findings from the econometric analyses verify that more receipt of foreign direct investment initially raises but later on reduces environmental problems. Thus, the nexus concerning these variables depicts an inverse U-shape. Besides, the results endorse that greening the energy consumption structures of the sampled sub-Saharan African countries helps to abate their environmental problems in the long run while financial development aggravates the extent of environmental adversities that take place. Lastly, improving the quality of regulatory agencies enables the Sub-Saharan African nations to further mitigate their environmental problems. Moreover, these aforementioned findings are observed to be heterogeneous across low- and middle-income categories of the selected Sub-Saharan African countries. Furthermore, the heterogeneity of the findings is also confirmed by the outcomes derived from the country-specific analyses. Nevertheless, these nations should attract clean energy-embodying foreign direct investment, make their energy consumption structures greener by amplifying renewable energy adoption rates, introduce green funds to develop their financial sectors, and make their environmental regulatory agencies more transparent with their activities.
  17. Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C
    PMID: 38349489 DOI: 10.1007/s11356-024-32372-4
    Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links