Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
  2. Low KS, Lee CK, Lee TS
    Environ Technol, 2003 Feb;24(2):197-204.
    PMID: 12675017
    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).
  3. Tang PL, Lee CK, Low KS, Zainal Z
    Environ Technol, 2003 Oct;24(10):1243-51.
    PMID: 14669804
    The sorption characteristics of Cr(VI) and Cu(II) by ethylenediamine modified rice hull from single and binary metal ion solutions were evaluated under various experimental conditions. Optimal Cr(VI) and Cu(II) removal from single metal ion solutions occurred at pH 2.0 and 5.5, respectively. Simultaneous removal of Cr(VI) and Cu(II) occurred at pH greater than 3.0. The sorption kinetics of Cr(VI) and Cu(II) from single and binary metal ion solutions were studied with reference to metal concentration, agitation rate and particle size. Sorption of Cr(VI) was more rapid than Cu(II). The kinetics of metal ion sorption fitted a pseudo-second order expression. The variation in the initial uptake rates was very small at an agitation rate beyond 150 rpm and sorption was generally independent of particle size. Equilibrium sorption data could be fitted into the Langmuir isotherm equation. Maximum sorption capacities of ethylenediamine modified rice hull for Cr(VI) at pH 2 and Cu(II) at pH 4 in single metal solutions were 0.45 and 0.06 mmol g(-1), respectively. This corresponds to an enhancement factor of 2.6 and 3 fold for Cr(VI) and Cu(II), respectively, compared to natural rice hull. A synergistic effect was observed for sorption of these ions in binary metal solutions.
  4. Sommer SG, Mathanpaal G, Dass GT
    Environ Technol, 2005 Mar;26(3):303-12.
    PMID: 15881027
    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option in practise.
  5. Hossain KA, Mohd-Jaafar MN, Appalanidu KB, Mustafa A, Ani FN
    Environ Technol, 2005 Mar;26(3):251-9.
    PMID: 15881021
    Selective Non-Catalytic Reduction (SNCR) of nitric oxide has been studied experimentally by injecting aqueous urea solution with and without additive in a pilot-scale diesel fired tunnel furnace at 3.4% excess oxygen level and with low ppm of baseline NO(x) ranging from 65 to 75 ppm within the investigated temperature range. The tests have been carried out using commercial grade urea as NO(x) reducing agent and commercial grade sodium carbonate as additive. The furnace simulated the small-scale combustion systems, where the operating temperatures are usually in the range of about 973 to 1323 K and NO(x) emission level remains below 100 ppm. With 5% plain urea solution, at Normalized Stoichiometric Ratio (NSR) of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO(x) reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO(x) reduction shifted towards lower temperatures. The result is quite significant, especially for this investigated level of baseline NO(x). The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 4 and optimum temperature of NO(x) reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade sodium carbonate is a potential additive.
  6. Aris A, Sharratt PN
    Environ Technol, 2006 Oct;27(10):1153-61.
    PMID: 17144264
    The effect of initial dissolved oxygen concentration (IDOC) on Fenton's reagent degradation of a dyestuff, Reactive Black 5 was explored in this study. The study was designed, conducted and analysed based on Central Composite Rotatable Design using a 3-1 lab-scale reactor. The participation of O2 in the process was experimentally observed and appears to be affected by the dosage of the reagents used in the study. The IDOC was found to have a significant influence on the process. Reducing the IDOC from 7.5 mg l(-1) to 2.5 mg l(-1) increased the removal of TOC by an average of about 10%. Reduction of IDOC from 10 mg l(-1) to 0 mg l(-1) enhanced the TOC removal by about 30%. The negative influence of IDOC is likely to be caused by the competition between the O2 and the reagents for the organoradicals. A model describing the relationship between initial TOC removal, reagent dosage and IDOC has also been developed.
  7. Goh CP, Seng CE, Sujari AN, Lim PE
    Environ Technol, 2009 Jun;30(7):725-36.
    PMID: 19705610 DOI: 10.1080/09593330902911689
    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
  8. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
  9. Karimi S, Abdulkhani A, Karimi A, Ghazali AH, Ahmadun FL
    Environ Technol, 2010 Apr 1;31(4):347-56.
    PMID: 20450108 DOI: 10.1080/09593330903473861
    The efficiency of advanced oxidation processes (AOPs), enzymatic treatment and combined enzymatic/AOP sequences for the colour remediation of soda and chemimechanical pulp and paper mill effluent was investigated. The results indicated that under all circumstances, the AOP using ultraviolet irradiation (photo-Fenton) was more efficient in the degradation of effluent components in comparison with the dark reaction. It was found that both versatile peroxidase (VP) from Bjerkandera adusta and laccase from Trametes versicolor, as pure enzymes, decolorize the deep brown effluent to a clear light-yellow solution. In addition, it was found that in the laccase treatment, the decolorization rates of both effluents were enhanced in the presence of 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate), while in the case of VP, Mn(+2) decreased the efficiency of the decolorization treatment. The concomitant use of enzymes and AOPs imposes a considerable effect on the colour remediation of effluent samples.
  10. Loo YM, Lim PE, Seng CE
    Environ Technol, 2010 Apr 14;31(5):479-87.
    PMID: 20480823 DOI: 10.1080/09593330903514482
    The objective of this research was to evaluate the treatment ofp-nitrophenol (PNP) as a sole organic carbon source using a sequencing batch reactor (SBR) with the addition of adsorbent. Two types of adsorbents, namely powdered activated carbon (PAC) and pyrolysed rice husk (PRH) were used in this study. Two identical SBRs, each with a working volume of 10 L, were operated with fill, react, settle, draw and idle periods in the ratio of 2:8:1:0.75:0.25 for a cycle time of 12 h. The results showed that, without the addition of adsorbent, increasing the influent PNP concentration to 200 mg/L resulted in the deterioration of chemical oxygen demand (COD) removal efficiency and PNP removal efficiency in the SBRs. Improvement in the performance of the SBR was observed with the addition of PAC. When the dosage of 1.0 g PAC/cycle was applied, COD removal of 95% and almost complete removal of PNP were achieved at the influent PNP concentration of 300 mg/L. The kinetic study showed that the rates of COD and PNP removal can be described by the first-order kinetics. The enhancement of performance in the PAC-supplemented SBR was postulated to be due to the initial adsorption of PNP by the freshly added and the bioregenerated PAC, thus reducing the inhibition on the microorganisms. The PRH was found to be ineffective because of its relatively low adsorption capacity for PNP, compared with that of PAC.
  11. Pendashteh AR, Fakhru'l-Razi A, Chuah TG, Radiah AB, Madaeni SS, Zurina ZA
    Environ Technol, 2010 Oct;31(11):1229-39.
    PMID: 21046953 DOI: 10.1080/09593331003646612
    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively.
  12. Abidin ZZ, Ismail N, Yunus R, Ahamad IS, Idris A
    Environ Technol, 2011 Jul;32(9-10):971-7.
    PMID: 21882550
    Many coagulants, mainly inorganic, are widely used in conventional water and wastewater treatment. Recent studies reported the occurrence of some chronic diseases associated with residual coagulant in treated wastewater. The use of alternative coagulants which are biodegradable and environmentally friendly could alleviate the problem associated with these diseases. This work investigates the capability of Jatropha curcas seed and presscake (the residue left after oil extraction) to reduce the turbidity of wastewater through coagulation. The coagulant was prepared by dissolving Jatropha curcas seed and presscake powder into solution. Then jar tests were conducted on kaolin solution as the model wastewater. The Jatropha seed was found to be an effective coagulant with more than 96% of turbidity removal at pH 1-3 and pH 11-12. The highest turbidity removal was recorded at pH 3 using a dosage of 120 mg/L. The flocs formed using Jatropha were observed to be bigger and to sediment faster when compared with flocs formed using alum. The turbidity removal was high (>98%) at all turbidities (100 NTU to 8000 NTU), suggesting its suitability for a wide range of industrial wastewater. The performance of Jatropha presscake after extraction of oil was also comparable to the fresh seed and alum at highly acidic and highly alkaline conditions. The addition of Jatropha did not significantly affect the pH of the kaolin samples after treatment and the sludge volume produced was less in comparison to alum. These results strongly support the use of Jatropha curcas seed and presscake as a potential coagulant agent.
  13. Khor SM, Ng SL, Lim PE, Seng CE
    Environ Technol, 2011 Dec;33(15-16):1903-14.
    PMID: 22439579
    The objective of this study was to evaluate the effects ofNi(II) and Cr(VI) individually and in combination on the simultaneous removal of chemical oxygen demand (COD), nitrogen and metals under a sequencing batch reactor (SBR) operation. Three identical laboratory-scale SBRs were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in a ratio of 1:12:1:2:8 for a cycle time of 24 h until the steady state was achieved. Nickel(II) at increasing concentrations up to 35 mg/L was added to one of the reactors; Cr(VI) at increasing concentrations up to 25 mg/L was added to a second reactor; while a combination of Ni(II) and Cr(VI) in equal concentrations up to 10 mg/L was added to a third reactor. The results demonstrate that both Ni(II) and Cr(VI) exerted a more pronounced inhibitory effect on the removal of ammonia nitrogen (AN) than on COD removal. Synergistic and antagonistic inhibitory effects on the rates of COD and AN removal, respectively, were observed for the 50% Ni(II) and 50% Cr(VI) (w/w) mixture in the concentration range between 10 and 20 mg/L. The simultaneous presence of 50% Ni(II) and 50% Cr(VI) at a concentration of 20 mg/L resulted in system failure.
  14. Chai YY, Kahar UM, Md Salleh M, Md Illias R, Goh KM
    Environ Technol, 2012 Jun;33(10-12):1231-8.
    PMID: 22856294
    Two thermophilic bacteria (SK3-4 and DT3-1) were isolated from the Sungai Klah (SK) and Dusun Tua (DT) hot springs in Malaysia. The cells from both strains were rod-shaped, stained Gram positive and formed endospores. The optimal growth of both strains was observed at 55 degrees C and pH 7. Strain DT3-1 exhibited a higher tolerance to chloramphenicol (100 microg ml(-1)) but showed a lower tolerance to sodium chloride (2%, w/v) compared to strain SK3-4. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains belong to the genus Anoxybacillus. High concentrations of 15:0 iso in the fatty acid profiles support the conclusion that both strains belong to the genus Anoxybacillus and exhibit unique fatty acid compositions and percentages compared to other Anoxybacillus species. The DNA G + C contents were 42.0 mol% and 41.8 mol% for strains SK3-4 and DT3-1, respectively. Strains SK3-4 and DT3-1 were able to degrade pullulan and to produce maltotriose and glucose, respectively, as their main end products. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequences, and the DNA G + C content, we propose that strains SK3-4 and DT3-1 are new pullulan-degrading Anoxybacillus strains.
  15. Abdollahi Y, Abdullah AH, Gaya UI, Zainal Z, Yusof NA
    Environ Technol, 2012 Jun;33(10-12):1183-9.
    PMID: 22856288
    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.
  16. Hasan DB, Abdul Aziz AR, Daud WM
    Environ Technol, 2012 Jun;33(10-12):1111-21.
    PMID: 22856280
    The mineralisation of remazol black B (RBB) was studied at concentrations ranging from 20-1000 mgL(-1). The work was aimed at investigating the Fenton-like peroxidation of RBB at a concentration typically obtained in Batik cottage industries. Other response parameters were degradation and colour removal efficiencies. The parameters that were measured included total organic carbon (TOC), chemical oxygen demand (COD) as well as absorbance for mineralisation, degradation and colour. To optimise the process, the interaction effects of several controlling variables on the treatment process were examined using dispersion matrix-optimal design and response surface analysis. Four specific variables: initial dye concentration (Dye)o; the molar ratio of oxidant to dye organic strength (H2O2):(COD); the mass ratio of the oxidant to the catalyst (H2O2):(Fe3+) and reaction time (t(r)), were observed. Three reduced empirical models, one for each response, were developed for describing the treatment process. For 20, 510 and 1000 mgL(-1), the optimum %TOC reduction and oxidation times were 44% for 95 min, 52% for 52.5 min and 68% for 10 min corresponding to 67, 81 and 75% COD reduction, respectively. The optimum COD reduction and oxidation times were 89% for 95 min, 91% for 10 min and 84% for 95 min for concentrations of 20, 510 and 1000 mg L(-1), respectively. For all concentrations, total colour removal was achieved. A comparison of the results obtained in this study with literature values for traditional Fenton, photo-Fenton and photo-Fenton-like oxidation indicated that the TOC reduction obtained using the Fenton-like process was satisfactory.
  17. Ali N, El-Harbawi M, Jabal AA, Yin CY
    Environ Technol, 2012 Feb-Mar;33(4-6):481-6.
    PMID: 22629620
    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.
  18. Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Rahman RA, Kadhum AA
    Environ Technol, 2012 Apr-May;33(7-9):915-26.
    PMID: 22720416
    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
  19. Chai EW, H'ng PS, Peng SH, Wan-Azha WM, Chin KL, Chow MJ, et al.
    Environ Technol, 2013 Sep-Oct;34(17-20):2859-66.
    PMID: 24527651
    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
  20. Imran HM, Akib S, Karim MR
    Environ Technol, 2013 Sep-Oct;34(17-20):2649-56.
    PMID: 24527626
    Uncontrolled stormwater runoff not only creates drainage problems and flash floods but also presents a considerable threat to water quality and the environment. These problems can, to a large extent, be reduced by a type of stormwater management approach employing permeable pavement systems (PPS) in urban, industrial and commercial areas, where frequent problems are caused by intense undrained stormwater. PPS could be an efficient solution for sustainable drainage systems, and control water security as well as renewable energy in certain cases. Considerable research has been conducted on the function of PPS and their improvement to ensure sustainable drainage systems and water quality. This paper presents a review of the use of permeable pavement for different purposes. The paper focuses on drainage systems and stormwater runoff quality from roads, driveways, rooftops and parking lots. PPS are very effective for stormwater management and water reuse. Moreover, geotextiles provide additional facilities to reduce the pollutants from infiltrate runoff into the ground, creating a suitable environment for the biodegradation process. Furthermore, recently, ground source heat pumps and PPS have been found to be an excellent combination for sustainable renewable energy. In addition, this study has identified several gaps in the present state of knowledge on PPS and indicates some research needs for future consideration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links