Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, et al.
    Eur J Med Chem, 2018 Nov 05;159:47-58.
    PMID: 30268823 DOI: 10.1016/j.ejmech.2018.09.052
    Acarbose and voglibose are well-known α-amylase inhibitors used for the management of type-II diabetes mellitus. Unfortunately, these well-known and clinically used inhibitors are also associated with several adverse effects. Therefore, there is still need to develop the safer therapy. Despite of a broad spectrum of biological significances of pyrazolone, it is infrequently evaluated for α-amylase inhibition. Current study deals with the synthesis and biological screening of aryl and arylidene substituted pyrazolones 1-18 for their potential α-amylase inhibitory activity. Structures of synthetic derivatives 1-18 were identified by different spectroscopic techniques. All compounds 1-18 (IC50 = 1.61 ± 0.16 μM to 2.38 ± 0.09 μM) exhibited significant to moderate inhibitory potential when compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). A number of derivatives including 8-12 (IC50 = 1.68 ± 0.1 μM to 1.97 ± 0.07 μM) and 14-16 (IC50 = 1.61 ± 0.16 μM to 1.93 ± 0.07 μM) were found to be significantly active. Limited SAR suggested that different substitutions on compounds do not have any significant effect on the inhibitory potential. Compounds were found to be mixed-type inhibitors revealed by kinetic studies. However, in silico study was identified a number of key features participating in the interaction with the binding site of α-amylase enzyme.
  2. Yoon YK, Ali MA, Wei AC, Shirazi AN, Parang K, Choon TS
    Eur J Med Chem, 2014 Aug 18;83:448-54.
    PMID: 24992072 DOI: 10.1016/j.ejmech.2014.06.060
    Two series of novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. Among the newly synthesized compounds, compound 4j displayed the best inhibitory activity for SIRT1 (IC50 = 54.21 μM) as well as for SIRT2 (IC50 = 26.85 μM). Cell proliferation assay showed that compound 4j possessed good antitumor activity against three different types of cancer cells derived from colon (HCT-116), breast (MDA-MB-468) and blood-leukemia (CCRF-CEM) with cell viability of 40.0%, 53.2% and 27.2% respectively at 50 μM. Docking analysis of representative compound 4j into SIRT2 indicated that the interaction with receptor was primarily due to hydrogen bonding and π-π stacking interactions.
  3. Yoon YK, Ali MA, Wei AC, Choon TS, Ismail R
    Eur J Med Chem, 2015 Mar 26;93:614-24.
    PMID: 24996257 DOI: 10.1016/j.ejmech.2013.06.025
    A total of 51 novel benzimidazoles were synthesized by a 4-step reaction starting from basic compound 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The structure of the novel benzimidazoles was confirmed by mass spectra as well as (1)H NMR spectroscopic data. Out of the 51 novel synthesized compounds, 42 of them were screened for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv strain using BacTiter-Glo™ Microbial Cell Viability (BTG) method. Results of activity screened using Alamar Blue method was also provided for comparison purposes. Two of the novel benzimidazoles synthesized showed moderately good activity with IC50 of less than 15 μM. Compound 5g, ethyl 2-(4-(trifluoromethyl)phenyl)-1-(2-morpholinoethyl)-1H-benzo[d]imidazole-5-carboxylate, was found to be the most active with IC50 of 11.52 μM.
  4. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al.
    Eur J Med Chem, 2015 Aug 28;101:295-312.
    PMID: 26150290 DOI: 10.1016/j.ejmech.2015.06.026
    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.
  5. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
  6. Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT
    Eur J Med Chem, 2015 Aug 28;101:534-51.
    PMID: 26188909 DOI: 10.1016/j.ejmech.2015.07.009
    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development.
  7. Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, et al.
    Eur J Med Chem, 2020 Apr 01;191:112154.
    PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154
    Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
  8. Tibon NS, Ng CH, Cheong SL
    Eur J Med Chem, 2020 Feb 15;188:111983.
    PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983
    Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
  9. Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, et al.
    Eur J Med Chem, 2014 Sep 12;84:382-94.
    PMID: 25036796 DOI: 10.1016/j.ejmech.2014.07.036
    A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.
  10. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atia-Tul-Wahab, Siddiqui S, et al.
    Eur J Med Chem, 2015 Mar 6;92:387-400.
    PMID: 25585009 DOI: 10.1016/j.ejmech.2015.01.009
    In an effort to design and synthesize a new class of α-glucosidase inhibitor, we synthesized benzothiazole hybrid having benzohydrazide moiety (5). Compound 5 was reacted with various substituted aryl aldehyde to generate a small library of compounds 6-35. Synthesis of compounds was confirmed by the spectral information. These compounds were screened for their α-glucosidase activity. They showed a varying degree of α-glucosidase inhibition with IC50 values ranging between 5.31 and 53.34 μM. Compounds 6, 7, 9-16, 19, 21-30, 32-35 showed superior activity as compared to standard acarbose (IC50 = 906 ± 6.3 μM). This has identified a new class of α-glucosidase inhibitors. The predicted physico-chemical properties indicated the drug appropriateness for most of these compounds, as they obey Lipinski's rule of five (RO5). A hybrid B3LYP density functional theory (DFT) was employed for energy, minimization of 3D structures for all synthetic compounds using 6-311 + G(d,p) basis sets followed by molecular docking to explore their interactions with human intestinal C- and N-terminal domains of α-glucosidase. All compounds bind to the prospective allosteric site of the C- terminal domain, and consequently, may be considered as mixed inhibitors. It was hypothesized that both the dipole moment and H-bond interactions govern the biological activation of these compounds.
  11. Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA, et al.
    Eur J Med Chem, 2014 Sep 12;84:731-8.
    PMID: 25069019 DOI: 10.1016/j.ejmech.2014.07.078
    4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
  12. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
  13. Taha M, Ullah H, Al Muqarrabun LMR, Khan MN, Rahim F, Ahmat N, et al.
    Eur J Med Chem, 2018 Jan 01;143:1757-1767.
    PMID: 29133042 DOI: 10.1016/j.ejmech.2017.10.071
    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1HNMR, 13CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors.
  14. Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, et al.
    Eur J Med Chem, 2017 Jan 27;126:1021-1033.
    PMID: 28012342 DOI: 10.1016/j.ejmech.2016.12.019
    Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
  15. Suthar SK, Boon HL, Sharma M
    Eur J Med Chem, 2014 Mar 3;74:135-44.
    PMID: 24457265 DOI: 10.1016/j.ejmech.2013.12.052
    The C-3, C-17 and C-22 congeners of pentacyclic triterpenoids reduced lantadene A (3), B (4) and 22β-hydroxyoleanolic acid (5) were synthesized and were tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead congeners 12 and 13 showed IC50 of 0.56 and 0.42 μmol, respectively against TNF-α induced activation of NF-κB. The congeners 12 and 13 exhibited inhibition of IKKβ in a single-digit micromolar dose and at the same time, 12 and 13 showed marked cytotoxicity against A549 lung cancer cells with IC50 of 0.12 and 0.08 μmol, respectively. The lead ester congeners were stable in the acidic pH, while hydrolyzed readily in the human blood plasma to release the active parent moieties.
  16. Shirbhate E, Singh V, Jahoriya V, Mishra A, Veerasamy R, Tiwari AK, et al.
    Eur J Med Chem, 2024 Jan 05;263:115938.
    PMID: 37989059 DOI: 10.1016/j.ejmech.2023.115938
    A significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies. Several ongoing clinical trials on dual targeting strategy are being conducted comprising HDAC inhibitory component and an epigenetic regulating agent. In this perspective, the review discusses the pharmacological aspects of HDAC and other epigenetic regulating factors as dual inhibitors as an emerging alternative approach for combination therapies.
  17. Salar U, Taha M, Khan KM, Ismail NH, Imran S, Perveen S, et al.
    Eur J Med Chem, 2016 Oct 21;122:196-204.
    PMID: 27371923 DOI: 10.1016/j.ejmech.2016.06.037
    3-Thiazolylcoumarin derivatives 1-14 were synthesized via one-pot two step reactions, and screened for in vitro α-glucosidase inhibitory activity. All compounds showed inhibitory activity in the range of IC50 = 0.12 ± 0.01-16.20 ± 0.23 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM), and also found to be nontoxic. Molecular docking study was carried out in order to establish the structure-activity relationship (SAR) which demonstrated that electron rich centers at one and electron withdrawing centers at the other end of the molecules showed strong inhibitory activity. All the synthesized compounds were characterized by spectroscopic techniques such as EI-MS, HREI-MS, (1)H NMR and (13)C NMR. CHN analysis was also performed.
  18. Salar U, Khan KM, Taha M, Ismail NH, Ali B, Qurat-Ul-Ain, et al.
    Eur J Med Chem, 2017 Jan 05;125:1289-1299.
    PMID: 27886546 DOI: 10.1016/j.ejmech.2016.11.031
    Current study is based on the biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives 1-26, by treating metronidazole with different aryl and hetero-aryl carboxylic acids in the presence of 1,1'-carbonyl diimidazole (CDI) as a coupling agent. Structures of all synthetic derivatives were confirmed with the help of various spectroscopic techniques such as EI-MS, (1)H -NMR and (13)C NMR. CHN elemental analyses were also found in agreement with the calculated values. Synthetic derivatives were evaluated to check their β-glucuronidase inhibitory activity which revealed that except few derivatives, all demonstrated good inhibition in the range of IC50 = 1.20 ± 0.01-60.30 ± 1.40 μM as compared to the standard d-saccharic acid 1,4-lactone (IC50 = 48.38 ± 1.05 μM). Compounds 1, 3, 4, 6, 9-19, and 21-24 were found to be potent analogs and showed superior activity than standard. Limited structure-activity relationship is suggested that the molecules having electron withdrawing groups like NO2, F, Cl, and Br, were displayed better activity than the compounds with electron donating groups such as Me, OMe and BuO. To verify these interpretations, in silico study was also performed, a good correlation was observed between bioactivities and docking studies.
  19. Saddique FA, Zaib S, Jalil S, Aslam S, Ahmad M, Sultan S, et al.
    Eur J Med Chem, 2018 Jan 01;143:1373-1386.
    PMID: 29126721 DOI: 10.1016/j.ejmech.2017.10.036
    Three series of 4-hydroxy-N'-[benzylidene/1-phenylethylidene]-2-H/methyl/benzyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides (9-11)a-l were synthesized and unraveled to be highly potent dual inhibitors of monoamine oxidases (MAO-A and MAO-B). All the examined compounds demonstrated IC50 values in lower micro-molar range for both MAO-A as well as MAO-B. The most active MAO-A inhibitor was 4-hydroxy-N'-(1-phenylethylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide (9i) with an IC50 value of 0.11 ± 0.005 μM, whereas, methyl 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide (3) was the most active MAO-B inhibitor with an IC50 value of 0.21 ± 0.01 μM. Enzyme kinetics studies revealed that the most potent compounds inhibited both MAO enzymes (A & B) in a competitive fashion. Molecular docking studies were also performed to obtain an intuitive picture of inhibition potential for potent inhibitors. The high potency of these compounds is optimally combined with highly favorable ADME profile with predicted good oral bioavailability.
  20. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links