Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
  2. Chigurupati S, Dhanaraj SA, Balakumar P
    Eur J Pharmacol, 2015 May 15;755:50-7.
    PMID: 25748601 DOI: 10.1016/j.ejphar.2015.02.043
    Described since long as a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptors (PPARs) regulate the gene expression of proteins involved in glucose and lipid metabolism. PPARs indeed regulate several physiologic processes, including lipid homeostasis, adipogenesis, inflammation, and wound healing. PPARs bind natural or synthetic PPAR ligands can function as cellular sensors to regulate the gene transcription. Dyslipidemia, and type 2 diabetes mellitus (T2DM) with insulin resistance are treated using agonists of PPARα and PPARγ, respectively. The PPARγ is a key regulator of insulin sensitization and glucose metabolism, and therefore is considered as an imperative pharmacological target to combat diabetic metabolic disease and insulin resistance. Of note, currently available PPARγ full agonists like rosiglitazone display serious adverse effects such as fluid retention/oedema, weight gain, and increased incidence of cardiovascular events. On the other hand, PPARγ partial agonists are being suggested to devoid or having less incidence of these undesirable events, and are under developmental stages. Current research is on the way for the development of novel PPARγ partial agonists with enhanced therapeutic efficacy and reduced adverse effects. This review sheds lights on the current status of development of PPARγ partial agonists, for the management of T2DM, having comparatively less or no adverse effects to that of PPARγ full agonists.
  3. Razali N, Agarwal R, Agarwal P, Kapitonova MY, Kannan Kutty M, Smirnov A, et al.
    Eur J Pharmacol, 2015 Feb 15;749:73-80.
    PMID: 25481859 DOI: 10.1016/j.ejphar.2014.11.029
    Steroid-induced ocular hypertension (SIOH) is associated with topical and systemic use of steroids. However, SIOH-associated anterior and posterior segment morphological changes in rats have not been described widely. Here we describe the pattern of intraocular pressure (IOP) changes, quantitative assessment of trabecular meshwork (TM) and retinal morphological changes and changes in retinal redox status in response to chronic dexamethasone treatment in rats. We also evaluated the responsiveness of steroid-pretreated rat eyes to 5 different classes of antiglaucoma drugs that act by different mechanisms. Up to 80% of dexamethasone treated animals achieved significant and sustained IOP elevation. TM thickness was significantly increased and number of TM cells was significantly reduced in SIOH rats compared to the vehicle-treated rats. Quantitative assessment of retinal morphology showed significantly reduced thickness of ganglion cell layer (GCL) and inner retina (IR) in SIOH rats compared to vehicle-treated rats. Estimation of retinal antioxidants including catalase, superoxide dismutase and glutathione showed significantly increased retinal oxidative stress in SIOH animals. Furthermore, steroid-treated eyes showed significant IOP lowering in response to treatment with 5 different drug classes. This indicated the ability of SIOH eyes to respond to drugs acting by different mechanisms. In conclusion, SIOH was associated with significant morphological changes in TM and retina and retinal redox status. Additionally, SIOH eyes also showed IOP lowering in response to drugs that act by different mechanisms of action. Hence, SIOH rats appear to be an inexpensive and noninvasive model for studying the experimental antiglaucoma drugs for IOP lowering and neuroprotective effects.
  4. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
  5. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH
    Eur J Pharmacol, 2014 Oct 5;740:584-95.
    PMID: 24973693 DOI: 10.1016/j.ejphar.2014.06.025
    Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.
  6. Agarwal R, Krasilnikova AV, Raja IS, Agarwal P, Mohd Ismail N
    Eur J Pharmacol, 2014 May 5;730:8-13.
    PMID: 24583339 DOI: 10.1016/j.ejphar.2014.02.021
    Angiotensin converting enzyme inhibitors (ACEIs) have been shown to lower intraocular pressure (IOP). Since, the ACEIs cause increased tissue prostaglandin levels, we hypothesized that the mechanisms of ACEI-induced IOP reduction have similarity with those of prostaglandin analogs. The present study investigated the involvement of matrix metalloproteinases (MMPs) and cytokine activity modulation as the underlying mechanisms of ACEI-induced ocular hypotension. The IOP lowering effect of single drop of enalaprilat dehydrate 1% was evaluated in rats pretreated with a broad spectrum MMP inhibitor or a cytokine inhibitor. Effect of angiotensin receptor blocker, losartan potassium 2%, was also studied to evaluate involvement of angiotensin II receptor type 1 (AT1) in IOP lowering effect of ACEI. Topical treatment with single drop of enalaprilat resulted in significant IOP reduction in treated eye with mean peak reduction 20.3% at 3h post-instillation. Treatment with losartan resulted in a peak IOP reduction of 13.3%, which was significantly lower than enalaprilat, indicating involvement of mechanisms in addition to AT1 blockade. Pretreatment with a broad spectrum MMP inhibitor or a cytokine inhibitor significantly attenuated the enalprilat-induced IOP reduction with mean peak IOP reduction of 11.2% and 13.6% respectively. The IOP-lowering effect of enalaprilat seems to be attributed to reduced angiotensin II type 1 receptor stimulation and modulation of MMP and cytokines activities.
  7. Ismail NA, Baines DL, Wilson SM
    Eur J Pharmacol, 2014 Jun 05;732:32-42.
    PMID: 24657276 DOI: 10.1016/j.ejphar.2014.03.005
    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na(+) absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na(+) transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na(+) absorption was quantified electrometrically. Acutely (20min) activating PKA in glucocorticoid-deprived (24h) cells increased the abundance of Ser(221)-phosphorylated, Ser(327)-phosphorylated and total Nedd4-2 without altering the abundance of Thr(246)-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na(+) absorption. Activating PKA (20min) in glucocorticoid-treated (0.2µM dexamethasone, 24h) cells, on the other hand, increased the abundance of Ser(221)-, Ser(327)- and Thr(246)-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na(+) transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na(+) absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits.
  8. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK
    Eur J Pharmacol, 2011 Jul 1;661(1-3):15-21.
    PMID: 21536024 DOI: 10.1016/j.ejphar.2011.04.014
    Painful neuropathy, a common complication of diabetes mellitus is characterized by allodynia and hyperalgesia. Recent studies emphasized on the role of non-neuronal cells, particularly microglia in the development of neuronal hypersensitivity. The purpose of the present study is to evaluate the effect of minocyline, a selective inhibitor of microglial activation to define the role of neuroimmune activation in experimental diabetic neuropathy. Cold allodynia and thermal and chemical hyperalgesia were assessed and the markers of inflammation and oxidative and nitrosative stress were estimated in streptozotocin-induced diabetic rats. Chronic administration of minocycline (40 and 80 mg/kg, i.p.) for 2 weeks started 2 weeks after diabetes induction attenuated the development of diabetic neuropathy as compared to diabetic control animals. In addition, minocyline treatment reduced the levels of interleukin-1β and tumor necrosis factor-α, lipid peroxidation, nitrite and also improved antioxidant defense in spinal cords of diabetic rats as compared to diabetic control animals. In contrast, minocycline (80 mg/kg, per se) had no effect on any of these behavioral and biochemical parameters assessed in age-matched control animals. The results of the present study strongly suggest that activated microglia are involved in the development of experimental diabetic neuropathy and minocycline exerted its effect probably by inhibition of neuroimmune activation of microglia. In addition, the beneficial effects of minocycline are partly mediated by its anti-inflammatory effect by reducing the levels of proinflammatory cytokines and in part by modulating oxidative and nitrosative stress in the spinal cord that might be involved in attenuating the development of behavioral hypersensitivity in diabetic rats.
  9. Ibrahim Abdelwahab S, Syaed Koko W, Mohamed Elhassan Taha M, Mohan S, Achoui M, Ameen Abdulla M, et al.
    Eur J Pharmacol, 2012 Mar 5;678(1-3):61-70.
    PMID: 22227329 DOI: 10.1016/j.ejphar.2011.12.024
    Columbin, a diterpenoid furanolactone, was isolated purely for the first time from the plant species Tinspora bakis. The anti-inflammatory effects of columbin were studied in vitro, in silico and in vivo. The effect of columbin on nitric oxide was examined on lipopolysaccharide-interferon-gamma (LPS/IFN) induced RAW264.7 macrophages. In vitro and in silico cyclooxygenase-1 and cyclooxygenase-2 inhibitory activities of columbin using biochemical kit and molecular docking, respectively, were investigated. Mechanism of columbin in suppressing NF-kappaB-translocation was tested using Cellomics®NF-κB activation assay and ArrayScan Reader in LPS-stimulated RAW264.7 cells. Moreover, effects of columbin in vivo that were done on carrageenan-induced mice paw-oedema were tested. Lastly, the in vitro and in vivo toxicities of columbin were examined on human liver cells and mice, respectively. Treatment with columbin or N(ω)-nitro-l-arginine methyl ester (l-NAME) inhibited LPS/IFN-γ-induced NO production without affecting the viability of RAW264.7. Pre-treatment of stimulated cells with columbin did not inhibit the translocation of NF-κB to the nucleus in LPS-stimulated cells. COX-1 and COX-2 inhibitory activities of columbin were 63.7±6.4% and 18.8±1.5% inhibition at 100μM, respectively. Molecular docking study further helped in supporting the observed COX-2 selectivity. Whereby, the interaction of columbin with Tyr385 and Arg120 signifies its higher activity in COX-2, as Tyr385 was reported to be involved in the abstraction of hydrogen from C-13 of arachidonate, and Arg120 is critical for high affinity arachidonate binding. Additionally, columbin inhibited oedema formation in mice paw. Lastly, the compound was observed to be safe in vitro and in vivo. This study presents columbin as a potential anti-inflammatory drug.
  10. Chia YY, Liong SY, Ton SH, Kadir KB
    Eur J Pharmacol, 2012 Feb 29;677(1-3):197-202.
    PMID: 22227336 DOI: 10.1016/j.ejphar.2011.12.037
    The activities of phosphoenolpyruvate carboxykinase (PEPCK) are influenced by active glucocorticoids which are activated by 11-β-hydroxysteroid dehydrogenase 1 (11β-HSD1) while hexose-6-phosphate dehydrogenase (H6PDH) influences the activities of 11-βHSD1 in a cofactor manner. Dysregulation of PEPCK and H6PDH has been associated with the pathogenesis of metabolic syndrome. Sixteen male Sprague Dawley rats, fed ad libitum, were assigned to two groups, control and treated, with the treated group being given GA at 100mg/kg for one week. Blood and subcutaneous and visceral adipose tissue, abdominal and quadriceps femoris muscle, liver and kidney were examined. GA treatment led to an overall significant decrease in blood glucose while HOMA-IR. PEPCK activities decreased in the liver but increased in the visceral adipose tissue. H6PDH activities also decreased significantly in the liver while 11β-HSD1 activities decreased significantly in all studied tissues except for subcutaneous adipose tissue. Adipocytes in the subcutaneous and visceral depots showed a reduction in size. Though increased glycogen storage was seen in the liver, no changes were observed in the kidneys and muscles. Results from this study may imply that GA could counteract the development of type 2 diabetes mellitus by improving insulin sensitivity and probably by reduction of H6PDH, 11β-HSD1 and a selective decrease in PEPCK activities.
  11. Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, et al.
    Eur J Pharmacol, 2010 Nov 25;647(1-3):103-9.
    PMID: 20826146 DOI: 10.1016/j.ejphar.2010.08.030
    The present study examined the potential antinociceptive activity of flavokawin B (6'-hydroxy-2',4'-dimethoxychalcone), a synthetic chalcone using chemical- and thermal-induced nociception models in mice. It was demonstrated that flavokawin B (FKB; 0.3, 1, 3 and 10 mg/kg) administered via both oral (p.o.) and intraperitoneal (i.p.) routes produced significant and dose-dependent inhibition in the abdominal constrictions induced by acetic acid, with the i.p. route producing antinociception of approximately 7-fold more potent than the p.o. route. It was also demonstrated that FKB produced significant inhibition in the two phases of the formalin-induced paw licking test. In addition, the same treatment of flavokawin B (FKB) exhibited significant inhibition of the neurogenic nociceptive induced by intraplantar injections of glutamate and capsaicin. Likewise, this compound also induced a significant increase in the response latency period to thermal stimuli in the hot plate test and its antinociceptive effect was not related to muscle relaxant or sedative action. Moreover, the antinociception effect of the FKB in the formalin-induced paw licking test and the hot plate test was not affected by pretreatment of non-selective opioid receptor antagonist, naloxone. The present results indicate that FKB produced pronounced antinociception effect against both chemical and thermal models of pain in mice that exhibited both peripheral and central analgesic activity.
  12. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
  13. Yeo JL, Tan BT, Achike FI
    Eur J Pharmacol, 2010 Sep 10;642(1-3):99-106.
    PMID: 20553918 DOI: 10.1016/j.ejphar.2010.05.040
    Acidosis modulates physiologic and pathophysiologic processes but the mechanism of acidotic vasodilatation remains unclear. We therefore explored this in aortic rings from normal and streptozotocin-induced diabetic Sprague-Dawley rats. Phenylephrine (PE)-induced contraction in endothelium-intact and -denuded rings were recorded under normal and acidotic pH with or without drug probes. Acidosis exerted a relaxant effect in endothelium-intact and -denuded euglycaemic and diabetic tissues. l-NAME or methylene blue partially inhibited acidotic relaxation in these endothelium-intact but not the -denuded tissues, with greater inhibition in the diabetic tissues, indicating that acidosis induces relaxation by endothelium-dependent and -independent mechanisms, the former being EDNO-cGMP mediated. Indomethacin had no effect on the tissues, indicating that cyclooxygenase products are neither involved in acidosis-induced vasodilatation nor in the modulation of phenylephrine-contraction. In euglycaemic tissues under normal pH, no K(+) channel blocker altered phenylephrine-contraction, but all (except glibenclamide) enhanced diabetic tissue contraction, indicating that normally, these channels (K(ir), K(V), BK(Ca), K(ATP)) do not modulate phenylephrine-contraction, but they (except K(ATP)) are expressed in diabetes where they attenuate phenylephine-induced contraction and modulate acidosis. Only the K(ir) channel modulates acidotic relaxation in euglycaemic tissues. Only tetraethylammonium and iberiotoxin enhanced phenylephrine-induced contraction in endothelium-denuded diabetic tissues indicating that BK(Ca) attenuates phenylephrine-contraction and that acidotic relaxation in this condition is modulated by a tetraethylammonium-sensitive mechanism. In conclusion, acidosis causes vasodilatation in normal and diabetic tissues via endothelium-dependent and -independent mechanisms differentially modulated by a combination of a NO-cGMP process and K(+) channels, some of which are dormant in the normal state but activated in diabetes mellitus.
  14. Haleagrahara N, Radhakrishnan A, Lee N, Kumar P
    Eur J Pharmacol, 2009 Oct 25;621(1-3):46-52.
    PMID: 19744476 DOI: 10.1016/j.ejphar.2009.08.030
    Quercetin is a bioflavonoid abundant in onions, apples, tea and red wine and one of the most studied flavonoids. Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. The objective of this study was to investigate the effect of quercetin on stress-induced changes in oxidative biomarkers in the hypothalamus of rats. Adult male Sprague Dawley rats were subjected to forced swimming stress for 45 min daily for 14 days. Effect of quercetin at three different doses (10, 20 and 30 mg/kg body weight) on serum corticosterone and oxidative biomarkers (lipid hydroperoxides, antioxidant enzymes and total antioxidants) was estimated. Swimming stress significantly increased the serum corticosterone and lipid hydroperoxide levels. A significant decrease in total antioxidant levels and super oxide dismutase, glutathione peroxidase and catalase levels was seen in the hypothalamus after stress and treatment with quercetin significantly increased these oxidative parameters and there was a significant decrease in lipid hydroperoxide levels. These data demonstrate that forced swimming stress produced a severe oxidative damage in the hypothalamus and treatment with quercetin markedly attenuated these stress-induced changes. Antioxidant action of quercetin may be beneficial for the prevention and treatment of stress-induced oxidative damage in the brain.
  15. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Abdallah HH, Johns EJ
    Eur J Pharmacol, 2009 Jun 10;612(1-3):69-74.
    PMID: 19356722 DOI: 10.1016/j.ejphar.2009.03.064
    This study set out to investigate the impact of chronic cumulative blockade of angiotensin II and adrenoceptors in WKY and SHR and to explore how the renovascular responses to adrenergic and angiotensin II receptor agonists may be interdependent. Rats were treated with either losartan, carvedilol or losartan+carvedilol for 7 days and on day eight, animals were pentobarbitone anaesthetized and prepared for renal haemodynamic study. Dose-response relationships were determined in terms of reduction/elevation in the magnitude of renal blood flow in response to intrarenal arterial injection of dopamine, phenylephrine and isoprenaline. Renal vascular responses were blunted in WKY and SHR treated with either losartan or carvedilol as compared to their untreated counterparts (P<0.05). In the combined treated rats, the vascular responses to isoprenaline and phenylephrine were restored to levels observed in the untreated rats, but the renal vasoconstrictor responses to dopamine decreased (P<0.05) in both WKY and SHR. There was a reduction of (P<0.05) in the magnitude of the isoprenaline induced renal vasodilation in all SHR as compared to WKY groups. The data obtained showed that the renal vascular action of dopamine, phenylephrine and isoprenaline depended on an intact renin-angiotensin system (RAS) in WKY and SHR. Treatment with losartan or carvedilol blunted the renal vasoconstrictor/vasodilator responses to sympathomimetics which was attenuated with the combined treatment. These observations using chronic blockade of adrenergic and angiotensin receptors demonstrated that there was a long standing interdependency between the RAS and sympathetic nervous system (SNS) in determining the responsiveness of the renal vasculature of normal and hypertensive rats.
  16. Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Eur J Pharmacol, 2010 Feb 25;628(1-3):247-54.
    PMID: 19958764 DOI: 10.1016/j.ejphar.2009.11.053
    Curcumin is a highly pleiotropic molecule with significant regulatory effects upon inflammation and inflammatory related diseases. However curcumin has one major important limitation in which it has poor bioavailability. Design of synthetic structural derivatives of curcumin is but one approach that has been used to overcome its poor bioavailability while retaining, or further enhancing, its drug-like effects. We have synthesized a series of curcumin analogues and describe the effects of 2,6-bis-4-(hydroxyl-3-methoxy-benzylidine)-cyclohexanone or BHMC upon nitric oxide and cytokine synthesis in cellular models of inflammation. BHMC showed a significant dose-response inhibitory action upon the synthesis of NO and we have shown that this effect was due to suppression of both iNOS gene and enzyme expression without any effects upon scavenging of nitrite. We also demonstrated that BHMC has a very minimal effect upon iNOS activity with no effect at all upon the secretion of PGE(2) but has a strong inhibitory effect upon MCP-1 and IL-10 secretion and gene expression. Secretion and gene expression of TNF-alpha and IL-6 were moderately inhibited whereas IL-8 and IL-1beta were not altered. We conclude that BHMC selectively inhibits the synthesis of several inflammatory mediators. BHMC should be considered a promising drug lead for preclinical and further pharmacological studies.
  17. Machha A, Achike FI, Mohd MA, Mustafa MR
    Eur J Pharmacol, 2007 Jun 22;565(1-3):144-50.
    PMID: 17442302
    Acute exposure to the flavonoid baicalein inhibited endothelium-dependent relaxation in physiological arteries, although the mechanisms are not fully understood. We investigated the effect of baicalein on vascular tone in Wistar-Kyoto (WKY) rat isolated aortic rings in the presence and absence of oxidative stress to further determine the underlying mechanisms. Exposure to baicalein (10 microM) completely abolished endothelium-dependent relaxation induced by acetylcholine and attenuated significantly the endothelium-independent relaxation induced by sodium nitroprusside. Baicalein, similar to Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microM), potentiated significantly the contractile response of aortic rings to alpha1-adrenoceptor agonist phenylephrine. In the presence of L-NAME the baicalein effect on phenylphrine contraction or acetylcholine relaxation was unaltered, suggesting that these effects of baicalein are (like L-NAME effect) endothelial nitric oxide synthase (eNOS)/endothelium-derived nitric oxide-dependent. Inhibition of cyclooxygenase activity with indomethacin (10 microM) or scavenging of superoxide anions with superoxide dismutase (150 units/ml), but not scavenging of hydrogen peroxide with catalase (800 units/ml), enhanced significantly by an essentially similar extent the relaxation to acetylcholine in baicalein-pretreated aortic rings. Relaxant effect to acetylcholine was significantly attenuated in control aortic rings, but was completely abolished in baicalein-pretreated aortic rings in the presence of reduced form of beta-nicotinamide adenine di-nucleotide (beta-NADH, 300 microM). Baicalein blocked beta-NADH (300 microM)-induced transient contractions, suggesting that baicalein may have inhibited activity of NADH/NADPH-oxidase. Baicalein did not alter the failure of acetylcholine to induce relaxation in the presence of pyrogallol (300 microM). In summary, acute exposure to baicalein impairs eNOS/endothelium-derived nitric oxide-mediated vascular tone in rat aortas through the inhibition of endothelium-derived nitric oxide bioavailability coupled to reduced bioactivity of endothelium-derived nitric oxide and to cyclooxygenase-mediated release of superoxide anions.
  18. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
  19. Khan AH, Sattar MA, Abdullah NA, Johns EJ
    Eur J Pharmacol, 2007 Aug 13;569(1-2):110-8.
    PMID: 17559832
    This study investigated whether the alpha(1)-adrenoceptor subtype(s) mediating the vasoconstrictor actions of the renal sympathetic nerves were altered in rats with cisplatin-induced renal failure. Male Wistar Kyoto rats were used and half received cisplatin (5 mg/kg i.p.) to induce renal failure and were taken for study 7 days later. The renal blood flow reductions caused by electrical renal nerve stimulation and close intra-renal administration of noradrenaline, phenylephrine and methoxamine were determined before and after amlodopine (AMP), 5-methylurapidil (MeU), chloroethylclonidine (CEC) or BMY 7378. Water intake and creatinine clearance were decreased (P<0.05) by 40-50% while fractional excretion of sodium was increased two-fold in the cisplatin treated rats. Mean arterial pressure was higher, 110+/-2 versus 102+/-3 mmHg and renal blood flow was lower, 10.7+/-0.9 versus 18.9+/-0.1 ml/min/kg in the renal failure rats (both P<0.05). AMP, MeU and BMY 7378 decreased (all P<0.05) the adrenergically induced renal vasoconstrictor responses in the renal failure groups by 30 to 50% and in normal rats by 20 to 40%. In the presence of CEC, renal nerve stimulation and noradrenaline and methoxamine induced renal vasoconstrictor responses were enhanced (all P<0.05) in the renal failure but not in the normal rats. These data showed that alpha(1A)- and alpha(1D)-adrenoceptors were the major subtypes in mediating adrenergically induced renal vasoconstriction but there was no substantial shift in subtype in renal failure. The contribution of alpha(1B)-adrenoceptor subtypes either pre- or post-synaptic appeared to be raised in the renal failure rats.
  20. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links