Displaying publications 1 - 20 of 345 in total

Abstract:
Sort:
  1. Taher M, Mohamed Amiroudine MZ, Tengku Zakaria TM, Susanti D, Ichwan SJ, Kaderi MA, et al.
    PMID: 25873982 DOI: 10.1155/2015/740238
    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[(3)H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.
  2. Sidahmed HM, Abdelwahab SI, Mohan S, Abdulla MA, Mohamed Elhassan Taha M, Hashim NM, et al.
    PMID: 23634169 DOI: 10.1155/2013/450840
    Cratoxylum arborescens (Vahl) Blume is an Asian herbal medicine with versatile ethnobiological properties including treatment of gastric ulcer. This study evaluated the antiulcerogenic mechanism(s) of α -mangostin (AM) in a rat model of ulcer. AM is a prenylated xanthone derived through biologically guided fractionation of C. arborescens. Rats were orally pretreated with AM and subsequently exposed to acute gastric lesions induced by ethanol. Following treatment, ulcer index, gastric juice acidity, mucus content, histological and immunohistochemical analyses, glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), and nonprotein sulfhydryl groups (NP-SH) were evaluated. The anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitory effect, and antioxidant activity of AM were also investigated in vitro. AM (10 and 30 mg/kg) inhibited significantly (P < 0.05) ethanol-induced gastric lesions by 66.04% and 74.39 %, respectively. The compound induces the expression of Hsp70, restores GSH levels, decreases lipid peroxidation, and inhibits COX-2 activity. The minimum inhibitory concentration (MIC) of AM showed an effective in vitro anti-H. pylori activity. The efficacy of the AM was accomplished safely without presenting any toxicological parameters. The results of the present study indicate that the antioxidant properties and the potent anti-H. pylori, in addition to activation of Hsp70 protein, may contribute to the gastroprotective activity of α -mangostin.
  3. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA
    PMID: 21584247 DOI: 10.1155/2011/543216
    Zingiber zerumbet Sm., locally known to the Malay as "Lempoyang," is a perennial herb found in many tropical countries, including Malaysia. The rhizomes of Z. zerumbet, particularly, have been regularly used as food flavouring and appetizer in various Malays' cuisines while the rhizomes extracts have been used in Malay traditional medicine to treat various types of ailments (e.g., inflammatory- and pain-mediated diseases, worm infestation and diarrhea). Research carried out using different in vitro and in vivo assays of biological evaluation support most of these claims. The active pharmacological component of Z. zerumbet rhizomes most widely studied is zerumbone. This paper presents the botany, traditional uses, chemistry, and pharmacology of this medicinal plant.
  4. Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S
    PMID: 32419792 DOI: 10.1155/2020/1787342
    Background: Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration.

    Methods: Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size.

    Results: Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index.

    Conclusions: Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.

  5. Yong WK, Abd Malek SN
    PMID: 25949267 DOI: 10.1155/2015/921306
    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.
  6. Giribabu N, Eswar Kumar K, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25852767 DOI: 10.1155/2015/542026
    The effect of V. vinifera seeds on carbohydrate metabolizing enzymes and other enzymes of the liver in diabetes is currently unknown. We therefore investigated changes in the activity levels of these enzymes following V. vinifera seed extract administration to diabetic rats. Methods. V. vinifera seed ethanolic extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) was administered to streptozotocin-induced male diabetic rats for 28 consecutive days. At the end of treatment, liver was harvested and activity levels of various liver enzymes were determined. Levels of thiobarbituric acid reactive substances (TBARS) were measured in liver homogenates and liver histopathological changes were observed. Results. V. vinifera seed ethanolic extract was able to prevent the decrease in ICDH, SDH, MDH, and G-6-PDH and the increase in LDH activity levels in liver homogenates. The seed extract also caused serum levels of ALT, AST, ALP, ACP, GGT, and total bilirubin to decrease while causing total proteins to increase. Additionally, the levels of ALT, AST, and TBARS in liver homogenates were decreased. Histopathological changes in the liver were reduced. Conclusion. Near normal activity levels of various enzymes and histology of the liver following V. vinifera seed ethanolic extract administration may be due to decrease in liver oxidative stress in diabetes.
  7. Borhanuddin B, Mohd Fozi NF, Naina Mohamed I
    PMID: 23304211 DOI: 10.1155/2012/684510
    Background. The effect of vitamin E on health-related conditions has been extensively researched, with varied results. However, to date, there was no published review of the effect of vitamin E on bone fracture healing. Purpose. This paper systematically audited past studies of the effect of vitamin E on bone fracture healing. Methods. Related articles were identified from Medline, CINAHL, and Scopus databases. Screenings were performed based on the criteria that the study must be an original study that investigated the independent effect of vitamin E on bone fracture healing. Data were extracted using standardised forms, followed by evaluation of quality of reporting using ARRIVE Guidelines, plus recalculation procedure for the effect size and statistical power of the results. Results. Six animal studies fulfilled the selection criteria. The study methods were heterogeneous with mediocre reporting quality and focused on the antioxidant-related mechanism of vitamin E. The metasynthesis showed α-tocopherol may have a significant effect on bone formation during the normal bone remodeling phase of secondary bone healing. Conclusion. In general, the effect of vitamin E on bone fracture healing remained inconclusive due to the small number of heterogeneous and mediocre studies included in this paper.
  8. Naina Mohamed I, Borhanuddin B, Shuid AN, Mohd Fozi NF
    PMID: 23118786 DOI: 10.1155/2012/250584
    Purpose. This paper explores the effects of vitamin E on bone structural changes. Methods. A systematic review of the literature was conducted to identify relevant studies about vitamin E and osteoporosis/bone structural changes. A comprehensive search in Medline and CINAHL for relevant studies published between the years 1946 and 2012 was conducted. The main inclusion criteria were published in English, studies had to report the association or effect of vitamin E and osteoporosis-related bone changes, and the osteoporosis-related bone changes should be related to lifestyle variables, aging, or experimentally-induced conditions. Results. The literature search identified 561 potentially relevant articles, whereby 11 studies met the inclusion criteria. There were three human epidemiological studies and eight animal experimental studies included in this paper. Four animal studies reported positive bone structural changes with vitamin E supplementation. The rest of the studies had negative changes or no effect. Studies with positive changes reported better effects with tocotrienol vitamin E isomer supplementation. Conclusions. This evidence-based review underscores the potential of vitamin E being used for osteoporosis. The effect of one of the vitamin E isomers, tocotrienols, on bone structural changes warrants further exploration. Controlled human observational studies should be conducted to provide stronger evidence.
  9. Abd Jalil A, Khaza'ai H, Nordin N, Mansor N, Zaulkffali AS
    PMID: 29348770 DOI: 10.1155/2017/6048936
    Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer's disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP) in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES) cell cultures were elucidated. A transgenic mouse ES cell line (46C) was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS) was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.
  10. Chin KY, Ima-Nirwana S
    PMID: 22919420 DOI: 10.1155/2012/747020
    Osteoporosis is a growing healthcare burden that affects the quality of life in the aging population. Vitamin E is a potential prophylactic agent that can impede the progression of osteoporosis. Various in vivo studies demonstrated the antiosteoporotic potential of vitamin E, but evidence on its molecular mechanism of action is limited. A few in vitro studies showed that various forms of vitamin E can affect the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling and their molecular targets, thus preventing the formation of osteoclasts in the early stage of osteoclastogenesis. Various studies have also shown that the effects of the different isoforms of vitamin E differ. The effects of single isoforms and combinations of isoforms on bone metabolism are also different. Vitamin E may affect bone metabolism by disruption of free radical-mediated RANKL signaling, by its oestrogen-like effects, by its effects on the molecular mechanism of bone formation, by the anti-inflammatory effects of its long-chain metabolites on bone cells, and by the inhibition of 3-hydroxyl-3-methyglutaryl coenzyme A (HMG-CoA). In conclusion, the vitamin E isoforms have enormous potential to be used as prophylactic and therapeutic agents in preventing osteoporosis, but further studies should be conducted to elucidate their mechanisms of action.
  11. Hayatullina Z, Muhammad N, Mohamed N, Soelaiman IN
    PMID: 23024690
    Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model.
  12. Nurul-Iman BS, Kamisah Y, Jaarin K, Qodriyah HM
    PMID: 23861707 DOI: 10.1155/2013/629329
    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.
  13. Chuah LO, Ho WY, Beh BK, Yeap SK
    PMID: 23990846 DOI: 10.1155/2013/751658
    Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (-)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
  14. Moses LB, Abu Bakar MF, Mamat H, Aziz ZA
    PMID: 33603822 DOI: 10.1155/2021/8811236
    The present study was conducted to determine the cytotoxicity effect of Eurycoma longifolia (Jack.) leaf extracts and also its possible anticancer mechanism of action against breast cancer cell lines: non-hormone-dependent MDA-MB-231 and hormone-dependent MCF-7. The leaves of E. longifolia were processed into unfermented and fermented batches before drying using freeze and microwave-oven drying techniques. Obtained extracts were tested for cytotoxicity effect using MTT assay and phenolic determination using HPLC-DAD technique. The most toxic sample was analyzed for its apoptotic cell quantification, cell cycle distribution, and the expression of caspases and apoptotic protein using flow cytometry technique. Fragmentation of DNA was tested using an agarose gel electrophoresis system. The results determined that the unfermented freeze-dried leaf extract was the most toxic towards MDA-MB-231 and MCF-7 cells, in a dose-dependent manner. This extract contains the highest phenolics of gallic acid, chlorogenic acid, ECG, and EGCG. The DNA fragmentation was observed in both cell lines, where cell cycle was arrested at the G2/M phase in MCF-7 cells and S phase in MDA-MB-231 cells. The number of apoptotic cells for MDA-MB-231 was increased when the treatment was prolonged from 24 h to 48 h but slightly decreased at 72 h, whereas apoptosis in MCF-7 cells occurred in a time-dependent manner. There were significant activities of cytochrome c, caspase-3, Bax, and Bcl-2 apoptotic protein in MDA-MB-231 cells, whereas MCF-7 cells showed significant activities for caspase-8, cytochrome c, Bax, p53, and Bcl-2 apoptotic protein. These results indicate the ability of unfermented freeze-dried leaf extract of E. longifolia to induce apoptosis cell death on MDA-MB-231 and MCF-7, as well as real evidence on sample preparation effect towards its cytotoxicity level.
  15. Chandradevan M, Simoh S, Mediani A, Ismail NH, Ismail IS, Abas F
    PMID: 32047522 DOI: 10.1155/2020/3238561
    This study aimed to determine the total phenolic content, DPPH scavenging, α-glucosidase, and nitric oxide (NO) inhibition of Gynura procumbens and Cleome gynandra extracts obtained with five different ethanolic concentrations. The findings showed that the 100% ethanolic extract of G. procumbens had the highest phenolic content and the lowest IC50 values for DPPH scavenging and NO inhibition activity compared to the properties of the other extracts. For C. gynandra, the 20% and 100% ethanolic extracts had comparably high total phenolic contents, and the latter possessed the lowest IC50 value in the NO inhibition assay. In addition, the 20% ethanolic extract of C. gynandra had the lowest IC50 value in the DPPH scavenging assay. However, none of the extracts from either herb had the ability to inhibit α-glucosidase enzyme. Pearson correlation analysis indicated a strong relationship between the phenolic content and DPPH scavenging activity in both herb extracts. A moderately strong relationship was also observed between the phenolic content and NO inhibition in G. procumbens extracts and not in C. gynandra extracts. The UHPLC-ESI-Orbitrap-MS revealed major phenolics from the groups of hydroxycinnamic acids, hydroxybenzoic acids, and flavonoid derivatives from both herbs, which could be the key contributors to their bioactivities. Among the identified metabolites, 24 metabolites were tentatively assigned for the first time from both species of studied herbs. These two herbs could be recommended as prospective natural products with valuable medicinal properties.
  16. Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN
    PMID: 23118785 DOI: 10.1155/2012/161527
    Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV) and trabecular number (Tb.N) and an increase in trabecular separation (Tb.S). The increase in osteoclast surface (Oc.S) and osteoblast surface (Ob.S) in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.
  17. Yaacob NS, Nengsih A, Norazmi MN
    PMID: 23476711 DOI: 10.1155/2013/989841
    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.
  18. Mohd Sairazi NS, Sirajudeen KNS, Muzaimi M, Mummedy S, Asari MA, Sulaiman SA
    PMID: 30108663 DOI: 10.1155/2018/7287820
    The protective effect of tualang honey (TH) on neuroinflammation and caspase-3 activity in rat cerebral cortex, cerebellum, and brainstem after kainic acid- (KA-) induced status epilepticus was investigated. Male Sprague-Dawley rats were pretreated orally with TH (1.0 g/kg body weight) five times at 12 h intervals. KA (15 mg/kg body weight) was injected subcutaneously 30 min after last oral treatment. Rats were sacrificed at 2 h, 24 h, and 48 h after KA administration. Neuroinflammation markers and caspase-3 activity were analyzed in different brain regions 2 h, 24 h, and 48 h after KA administration. Administration of KA induced epileptic seizures. KA caused significant (p < 0.05) increase in the level of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), glial fibrillary acidic protein (GFAP), allograft inflammatory factor 1 (AIF-1), and cyclooxygenase-2 (COX-2) and increase in the caspase-3 activity in the rat cerebral cortex, cerebellum, and brainstem at multiple time points. Pretreatment with TH significantly (p < 0.05) reduced the elevation of TNF-α, IL-1β, GFAP, AIF-1, and COX-2 level in those brain regions at multiple time points and attenuated the increased caspase-3 activity in the cerebral cortex. In conclusion, TH reduced neuroinflammation and caspase-3 activity after kainic acid- (KA-) induced status epilepticus.
  19. Mohamad Zaid SS, Kassim NM, Othman S
    PMID: 26788107 DOI: 10.1155/2015/202874
    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links