Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
  2. Alyousefi NA, Mahdy MA, Xiao L, Mahmud R, Lim YA
    Exp Parasitol, 2013 Jun;134(2):141-7.
    PMID: 23523861 DOI: 10.1016/j.exppara.2013.03.001
    Giardia duodenalis is an important intestinal protozoan in Yemen with infection rates ranging from 18% to 27%. To date, there has been no genotyping study to provide a better understanding of the transmission dynamic. This study was conducted to genotype and subtype G. duodenalis in Yemen. Stool samples were collected from 503 Yemeni outpatients between 1 and 80 years old, including 219 males and 284 females. Giardia cysts were detected via microscopy after the formal-ether concentration. Genotyping of Giardia was carried out using PCR and sequence analysis of the 16s rRNA and b-giardin genes. Of the 89 microscopy-positive Giardia samples, 65 were successfully sequenced, of which 66% (43 of 65) were identified as G. duodenalis assemblage A and 34% (22 of 65) as assemblage B. Further subtyping analysis based on b-giardin gene identified the presence of subtypes A2 and A3, which belong to the anthroponotic sub-assemblage AII. Data of the study suggest that anthroponotic transmission played a potential role in the transmission of giardiasis in the community. However, further genotyping and subtyping studies of specimens from humans and animals living in the same households are needed for a more definitive understanding of giardiasis transmission in Yemen.
  3. Anderios F, Noorrain A, Vythilingam I
    Exp Parasitol, 2010 Feb;124(2):181-9.
    PMID: 19765587 DOI: 10.1016/j.exppara.2009.09.009
    Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per microL of blood for asexual stage and 88-264 parasites per microL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.
  4. Anwar A, Soomaroo A, Anwar A, Siddiqui R, Khan NA
    Exp Parasitol, 2020 Aug;215:107915.
    PMID: 32461112 DOI: 10.1016/j.exppara.2020.107915
    Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 μM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 μM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.
  5. Aqeel Y, Siddiqui R, Farooq M, Khan NA
    Exp Parasitol, 2015 Oct;157:170-6.
    PMID: 26297676 DOI: 10.1016/j.exppara.2015.08.007
    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.
  6. Chang SP, Kramer KJ, Yamaga KM, Kato A, Case SE, Siddiqui WA
    Exp Parasitol, 1988 Oct;67(1):1-11.
    PMID: 3049134
    The gene encoding the 195,000-Da major merozoite surface antigen (gp195) of the FUP (Uganda-Palo Alto) isolate of Plasmodium falciparum, a strain widely used for monkey vaccination experiments, has been cloned and sequenced. The translated amino acid sequence of the FUP gp195 protein is closely related to the sequences of corresponding proteins of the CAMP (Malaysia) and MAD-20 (Papua New Guinea) isolates and more distantly related to those of the Wellcome (West Africa) and K1 (Thailand) isolates, supporting the proposed allelic dimorphism of gp195 within the parasite population. The prevalence of dimorphic sequences within the gp195 protein suggests that many gp195 epitopes would be group-specific. Despite the extensive differences in amino acid sequence between gp195 proteins of these two groups, the hydropathy profiles of proteins representative of both groups are very similar. The conservation of overall secondary structure shown by the hydropathy profile comparison indicates that gp195 proteins of the various P. falciparum isolates are functionally equivalent. This information on the primary structure of the FUP gp195 protein will enable us to evaluate the possible roles of conserved, group-specific and variable epitopes in immunity to the blood stage of the malaria parasite.
  7. Chew WK, Wah MJ, Ambu S, Segarra I
    Exp Parasitol, 2012 Jan;130(1):22-5.
    PMID: 22027550 DOI: 10.1016/j.exppara.2011.10.004
    Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
  8. Chin VK, Chuah YK, Lee TY, Nordin N, Ibraheem ZO, Zakaria ZA, et al.
    Exp Parasitol, 2020 Sep;216:107946.
    PMID: 32622941 DOI: 10.1016/j.exppara.2020.107946
    This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.
  9. Collins WE, Warren M, Skinner JC, Alling DW
    Exp Parasitol, 1970 Jun;27(3):507-15.
    PMID: 4986810
  10. Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY
    Exp Parasitol, 2018 Sep;192:19-24.
    PMID: 30031120 DOI: 10.1016/j.exppara.2018.07.009
    Amoebae from the genus Acanthamoeba are facultative pathogens of humans and other animals. In humans they most frequently infect the eye causing a sight threatening infection known as Acanthamoeba keratitis (AK), and also cause an often fatal encephalitis (GAE). A mannose-binding protein (MBP) has been identified as being important for Acanthamoeba infection especially in AK. This lectin has previously been characterized from Acanthamoeba castellanii as consisting of multiple 130 kDa subunits. MBP expression correlates with pathogenic potential and is expressed in a number of Acanthamoeba species. Here we report the purification of a similar lectin from Acanthamoeba culbertsoni and the production of a monoclonal antibody to it. The A. culbertsoni MBP was isolated by affinity chromatography using α-D-mannose agarose and has an apparent molecular weight of 83 kDa. The monoclonal antibody is an IgM that is useful in both western blots and immunofluorescence. We expect that this antibody will be useful in the study of the pathology of A. culbertsoni and in its identification in clinical samples.
  11. Kanwal, Mungroo MR, Anwar A, Ali F, Khan S, Abdullah MA, et al.
    Exp Parasitol, 2020 Nov;218:107979.
    PMID: 32866583 DOI: 10.1016/j.exppara.2020.107979
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that can cause life-threatening infections involving the central nervous system. The high mortality rates of these infections demonstrate an urgent need for novel treatment options against the amoebae. Considering that indole and thiazole compounds possess wide range of antiparasitic properties, novel bisindole and thiazole derivatives were synthesized and evaluated against the amoebae. The antiamoebic properties of four synthetic compounds i.e., two new bisindoles (2-Bromo-4-(di (1H-indol-3-yl)methyl)phenol (denoted as A1) and 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol (A2)) and two known thiazole (4-(3-Nitrophenyl)-2-(2-(pyridin-3-ylmethylene)hydrazinyl)thiazole (A3) and 4-(Biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole (A4)) were evaluated against B. mandrillaris and N. fowleri. The ability of silver nanoparticle (AgNPs) conjugation to enrich antiamoebic activities of the compounds was also investigated. The synthetic heterocyclic compounds demonstrated up to 53% and 69% antiamoebic activities against B. mandrillaris and N. fowleri respectively, while resulting in up to 57% and 68% amoebistatic activities, respectively. Antiamoebic activities of the compounds were enhanced by up to 71% and 51% against B. mandrillaris and N. fowleri respectively, after conjugation with AgNPs. These compounds exhibited potential antiamoebic effects against B. mandrillaris and N. fowleri and conjugation of synthetic heterocyclic compounds with AgNPs enhanced their activity against the amoebae.
  12. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
  13. Kumarasamy V, Kuppusamy UR, Jayalakshmi P, Govind SK
    Exp Parasitol, 2023 Aug;251:108564.
    PMID: 37308003 DOI: 10.1016/j.exppara.2023.108564
    Blastocystis is an enteric protozoan parasite with extensive genetic variation and unclear pathogenicity. It is commonly associated with gastrointestinal symptoms such as nausea, diarrhea, vomiting and abdominal pain in immunocompromised individuals. In this study, we explored the in vitro and in vivo effects of Blastocystis on the activity of a commonly used CRC chemotherapeutic agent, 5-FU. The cellular and molecular effects of solubilized antigen of Blastocystis in the presence of 5-FU were investigated using HCT116, human CRC cell line and CCD 18-Co, normal human colon fibroblast cells. For the in vivo study, 30 male Wistar rats were divided into six groups, as follows; Control Group: oral administration of 0.3 ml Jones' medium, Group A: rats injected with azoxymethane (AOM), Group A-30FU: Rats injected with AOM and administered 30 mg/kg 5-FU, Group B-A-30FU: rats inoculated with Blastocystis cysts, injected with AOM and administered 30 mg/kg 5-FU, Group A-60FU: rats injected with AOM and administered 60 mg/kg 5-FU and Group B-A-60FU: rats inoculated with Blastocystis cysts, injected with AOM and administered 60 mg/kg 5-FU. The in vitro study revealed that the inhibitory potency of 5-FU at 8 μM and 10 μM was reduced from 57.7% to 31.6% (p 
  14. Lau YL, Fong MY
    Exp Parasitol, 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
  15. Lee IL, Tan TC, Govind SK
    Exp Parasitol, 2019 Mar;198:105-110.
    PMID: 30695704 DOI: 10.1016/j.exppara.2019.01.007
    This study was aimed at establishing a protocol for water sample processing for the detection of Blastocystis sp. using distilled water spiked with Blastocystis sp. cysts. The study established a protocol involving eight technical aspects, namely, storage temperature, storage duration, minimum water sample volume, optimum relative centrifugal force, centrifugation duration, minimum number of cyst for inoculation in Jones' medium and turn-around-time for the detection of vacuolar forms of Blastocystis sp. Results showed a minimum of 1.0 L water sample should be collected and processed on the same day. Otherwise, it should be stored at 4 °C and processed within 3 days. Water sample should be centrifuged at 1400×g for 10 min. For the isolation of Blastocystis sp. cysts, parasite pellet could be layered on top of Ficoll-Paque™ PLUS, centrifuged at 1400×g for 20 min and washed twice using 0.9% saline with centrifugation at 1400×g for 10 min. A minimum of 1 × 105 cysts could then be inoculated in Jones' medium supplement with 10% horse serum, incubated at 37 °C and examined for any presence of vacuolar forms of Blastocystis sp. after 3 days of inoculation. A protocol for water sample processing for the detection of Blastocystis sp. has successfully been established. The protocol was validated using 106 various water samples. This protocol will be very useful in determining the extent of Blastocystis sp. contamination in water sources in order to identify the seriousness of contamination.
  16. Lim BH, Noordin R, Nor ZM, Rahman RA, Abdullah KA, Sinnadurai S
    Exp Parasitol, 2004 Sep-Oct;108(1-2):1-6.
    PMID: 15491542
    BmR1 recombinant antigen has previously been shown to demonstrate high sensitivity and specificity in the serological diagnosis of brugian filariasis in humans. In this study, the pattern of recognition of antibody to BmR1 during Brugia malayi infection was investigated by employing Meriones unguiculatus as the experimental model. Thirty two gerbils were infected subcutaneously with 120 L(3); and two control groups each comprising 25 animals were employed. ELISA using BmR1 was used to detect filaria-specific IgG antibodies elicited by the gerbils; using sera collected from the day 1 until day 150 post-inoculation (p.i.). The results showed that BmR1 detected B. malayi infection in gerbils harboring adult worms irrespective of the presence of circulating microfilaria, and was exemplified by positive ELISA results in nine a microfilaraemic animals that harbored live adult worms. The initial time of the antibody recognition was at day 8 p.i. and the antibody titre showed some correlation with adult worm burden.
  17. Lim KT, Zahari Z, Amanah A, Zainuddin Z, Adenan MI
    Exp Parasitol, 2016 Mar;162:49-56.
    PMID: 26772786 DOI: 10.1016/j.exppara.2016.01.002
    To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications.
  18. Lim KT, Amanah A, Chear NJ, Zahari Z, Zainuddin Z, Adenan MI
    Exp Parasitol, 2018 Jan;184:57-66.
    PMID: 29175017 DOI: 10.1016/j.exppara.2017.11.007
    In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 μM and 0.71 ± 0.01 μM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.
  19. Lim WG, Tong T, Chew J
    Exp Parasitol, 2020 Feb 19;211:107862.
    PMID: 32087220 DOI: 10.1016/j.exppara.2020.107862
    Chryseobacterium indologenes and Chryseobacterium gleum are Gram negative environmental bacteria that have been frequently reported to implicate in fatal nosocomial infections, such as bacteraemia and ventilator-associated pneumonia in immunocompromised individuals in the past decades. The interaction between Chryseobacterium spp. and Acanthamoeba castellanii, a free-living amoeba ubiquitous in the environment, has not been explored previously. In this study, C. indologenes and C. gleum were co-cultured with A. castellanii trophozoites and their interactions were evaluated. Our results showed that when co-cultured with A. castellanii, bacterial numbers of C. indologenes and C. gleum increased significantly (p  0.05). Interestingly, the two Chryseobacterium spp. associated, invaded and/or taken up by A. castellanii at significantly higher rates than Escherichia coli K1, a neuropathogenic bacterial strain known to interact and replicate intracellularly in A. castellanii (p 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links