Displaying all 4 publications

Abstract:
Sort:
  1. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
  2. Shafee N, AbuBakar S
    FEBS Lett., 2002 Jul 31;524(1-3):20-4.
    PMID: 12135735
    Dengue virus type 2 (DENV-2) infection induced apoptotic cellular DNA fragmentation in Vero cells within 8 days of infection. The addition of high concentrations of extracellular Zn(2+) but not Ca(2+), Mg(2+) or Mn(2+) to the cell culture medium hastened the detection of apoptosis to within 4 h after infection. No apoptotic cellular DNA fragmentation was detected in the cell culture treated with Zn(2+) alone or infected with heat- or ultraviolet light-inactivated DENV-2 in the presence of Zn(2+). These results suggest that (i) apoptosis is induced in African green monkey kidney cells infected with live DENV-2 and (ii) the addition of high extracellular Zn(2+) accelerates detection of apoptosis in the DENV-2-infected cells.
  3. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, et al.
    FEBS Lett., 1999 Aug 13;456(3):379-83.
    PMID: 10462048
    Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
  4. Szpak M, Xue Y, Ayub Q, Tyler-Smith C
    FEBS Lett., 2019 07;593(13):1431-1448.
    PMID: 31116407 DOI: 10.1002/1873-3468.13447
    Classic selective sweeps occur when positive selection increases a variant's frequency from low to high in a population, and underlie some long-studied human characteristics such as variation in skin, hair or eye colour. In such well-studied 'gold standard' examples, a known variant has been associated with a plausible phenotype and underlying selective force. Signatures of classic sweeps have more recently been detected in population-genetic data independently of any prior information about the corresponding phenotype or selective force, and usually without suggesting any insights into these. Motivated by the need to understand such candidates, we first review the gold standards and show that our understanding of them is often incomplete or unconvincing; only two of the examples we consider are compellingly explained. We assess approaches for large-scale association of classic sweep candidate variants to phenotypes and selective forces, test these on the gold standards, and discuss the standards of evidence needed to adequately understand a selective sweep.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links