Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Yung YL, Lakshmanan S, Chu CM, Kumaresan S, Tham HJ
    PMID: 37549246 DOI: 10.1080/19440049.2023.2235608
    The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.
  2. Yung YL, Lakshmanan S, Chu CM, Tham HJ, Kumaresan S
    PMID: 38011619 DOI: 10.1080/19440049.2023.2283873
    The presence of 3-monochloropropane-1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in processed palm oils is of concern, as these oils are widely used for edible purposes. The mitigation method studied here optimizes the removal of chloride through water washing of crude palm oil (CPO), to limit the formation of 3-MCPDE. The contaminant removal obtained via washing CPO supports the quantitative findings. By utilizing 5% water in the washing step, water-soluble chlorides in CPO are removed by up to 76%, resulting in a 71% reduction of 3-MCPDE to within statutory limits. In this study, a linear correlation was developed between the chloride and the corresponding 3-MCPDE with a correlation coefficient (R2) of 0.99. Using the correlations, 1.0 mg/kg of 3-MCPDE in refined, bleached and deodorized palm oil (RBDPO) will be obtained from CPO with 1.2 mg/kg chloride with 7% wash water usage. The study also showed minor GE reduction between 7 and 11% was attained after water washing.
  3. Yibadatihan S, Jinap S, Mahyudin NA
    PMID: 25396715 DOI: 10.1080/19440049.2014.978396
    Palm kernel cake (PKC) is a useful source of protein and energy for livestock. Recently, it has been used as an ingredient in poultry feed. Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans. This concern has accentuated the need for the evaluation of mycotoxins in PKC. Furthermore, a method for quantifying mycotoxins in PKC has so far not been established. The aims of this study were therefore (1) to develop a method for the simultaneous determination of mycotoxins in PKC and (2) to validate and verify the method. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using an electrospray ionisation interface (ESI) in both positive- and negative-ion modes was developed for the simultaneous determination of aflatoxins (AFB₁, AFB₂, AFG₁ and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂), T-2 and HT-2 toxin in PKC. An optimum method using a 0.2 ml min⁻¹ flow rate, 0.2% formic acid in aqueous phase, 10% organic phase at the beginning and 90% organic phase at the end of the gradient was achieved. The extraction of mycotoxins was performed using a solvent mixture of acetonitrile-water-formic acid (79:20:1, v/v) without further clean-up. The mean recoveries of mycotoxins in spiked PKC samples ranged from 81% to 112%. Limits of detection (LODs) and limits of quantification (LOQs) for mycotoxin standards and PKC samples ranged from 0.02 to 17.5 μg kg⁻¹ and from 0.06 to 58.0 μg kg⁻¹, respectively. Finally, the newly developed method was successfully applied to PKC samples. The results illustrated the fact that the method is efficient and accurate for the simultaneous multi-mycotoxin determination in PKC, which can be ideal for routine analysis.
  4. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
  5. Tukiran NA, Ismail A, Mustafa S, Hamid M
    PMID: 25861981 DOI: 10.1080/19440049.2015.1039605
    Porcine gelatine is a common adulterant found in edible bird's nests (EBNs) used to increase the net weight prior to sale. This study aimed to develop indirect enzyme-linked immunosorbent assays (ELISAs) for porcine gelatine adulteration using anti-peptide polyclonal antibodies. Three indirect ELISAs were developed (PAB1, 2 and 3), which had limits of detection (LODs) of 0.12, 0.10 and 0.11 µg g(-1), respectively. When applied to standard solutions of porcine gelatine, the inter- and intra-assays showed coefficients of variation (CVs) less than 20% and were able to detect at least 0.5 ng µg(-1) (0.05%) porcine gelatine in spiked samples. The proposed ELISA offers attractions for quality control in the EBN industry.
  6. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
  7. Tan ET, Al Jassim R, D'Arcy BR, Fletcher MT
    PMID: 27575484
    Camel meat production for human consumption and pet food manufacture accounts for a relatively small part of overall red meat production in Australia. Reliable statistical data for the Australian production and consumption of camel meat are not available; however, it is estimated that 300,000 feral camels roam within the desert of central Australia, with an annual usage of more than 3000 camels for human consumption, 2000 for pet food manufacture and a smaller number for live export. Despite a small Australian camel meat production level, the usage of camel meat for pet food has been restricted in recent years due to reports of serious liver disease and death in dogs consuming camel meat. This camel meat was found to contain residues of indospicine, a non-proteinogenic amino acid found in certain Indigofera spp., and associated with mild to severe liver disease in diverse animals after dietary exposure to this hepatotoxin. The extent of indospicine-contaminated Australian camel meat was previously unknown, and this study ascertains the prevalence of such residue in Australian camel meat. In this study, indospicine levels in ex situ (95 samples collected from an abattoir in Queensland) and in situ (197 samples collected from camels after field culling in central Australia) camel meat samples were quantitated using a validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The quantitation results showed 46.7% of the in situ- and 20.0% of the ex situ-collected camel meat samples were contaminated by indospicine (more than the limit of detection (LOD) of 0.05 mg kg(-1) fresh weight). The overall indospicine concentration was higher (p < 0.05) in the in situ-collected samples. Indospicine levels detected in the present study are considered to be low; however, a degree of caution must still be exercised, since the tolerable daily intake for indospicine is currently not available for risk estimation.
  8. Sultana S, Hossain MAM, Naquiah NNA, Ali ME
    PMID: 30028648 DOI: 10.1080/19440049.2018.1500719
    Gelatin is widely used in pharmaceuticals as a protective coating, such as soft and hard capsule shells. However, the animal source of gelatin is a sensitive issue because certain gelatins such as porcine and bovine gelatins are not welcome in Halal, Kosher and Hindus' consumer goods. Recently, we have documented DNA barcoding and multiplex PCR platforms for discriminating porcine, bovine and fish gelatins in various fish and confectionary products; but those assays were not self-authenticating and also not tested in highly refined pharmaceutical products. To address this knowledge gap, here we report a self-authenticating multiplex PCR-restriction fragment length polymorphism (RFLP) assay to identify animal sources of various gelatin in pharmaceutical capsules. Three different restriction enzymes, BsaAI, Hpy188I and BcoDI were used to yield distinctive RFLP patterns for gelatin-based bovine (26, 94 bp), fish (97, 198 bp) and porcine (17, 70 bp) DNA in control experiments. The specificity was cross-tested against 16 non-target species and the optimised assay was used to screen gelatin sources in 30 halal-branded pharmaceuticals capsule shells. Bovine and porcine DNA was found in 27 and 3 of the 30 different capsules products. The assay was suitable for detecting 0.1 to 0.01 ng total DNA extracted from pure and mixed gelatins. The study might be useful to authenticate and monitor halal, kosher, vegetarian and Hindu compliant pharmaceuticals, foods and cosmetics.
  9. Sultana S, Azlan A, Mohd Desa MN, Mahyudin NA, Anburaj A
    PMID: 38284970 DOI: 10.1080/19440049.2024.2304577
    Regular testing and systematic investigation play a vital role to ensure product safety. Until now, the existing food authentication techniques have been based on proteins, lipids, and nucleic acid-based assays. Among various deoxyribonucleic acid (DNA)-based methods, the recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based bio-sensing is an innovative and fast-expanding technology. The CRISPR/Cas-9 is known as Clustered Regularly Interspaced Short Palindromic Repeats due to the flexibility and simplicity of the CRISPR/Cas9 site-specific editing tool has been applied in many biological research areas such as Gene therapy, cell line development, discovering mechanisms of disease, and drug discovery. Nowadays, the CRISPR-Cas system has also been introduced into food authentication via detecting DNA barcodes of poultry and livestock both in processed and unprocessed food samples. This review documents various DNA based approaches, in an accessible format. Future CRISPR technologies are forecast while challenges are outlined.
  10. Soleimany F, Jinap S, Rahmani A, Khatib A
    PMID: 21337232 DOI: 10.1080/19440049.2010.551547
    A new method for the simultaneous quantification of 12 mycotoxins was developed and optimized using reverse phase high performance liquid chromatography (RP-HPLC) with a photodiode array (PDA) and fluorescence detector (FLD), a photochemical reactor for enhanced detection (PHRED) and post-column derivatization. The mycotoxins included aflatoxins (AFB(1), AFB(2), AFG(1), and AFG(2)), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB(1), FB(2), and FB(3)), T-2 and HT-2 toxins. A double sample extraction with a phosphate-buffered saline solution (PBS) and methanol was used for co-extraction of mycotoxins, and a multifunctional immunoaffinity column was used for cleanup. Optimum conditions for separation of the mycotoxins were obtained to separate 12 mycotoxins in FLD and PDA chromatograms with a high resolution. The method gave recoveries in the range 72-111% when applied to spiked corn samples. The limits of detection (LOD) were 0.025 ng/g for AFB(1) and AFG(1), 0.012 ng/g for AFB(2) and AFG(2), 0.2 ng/g for OTA, 1.5 ng/g for ZEA, 6.2 ng/g for FB(1), FB(3) and HT-2 toxin, 9.4 ng/g for FB(2) and T-2 toxin, and 18.7 ng/g for DON. In addition, the limits of quantification (LOQ) ranged from 0.04 ng/g for AFB(2) and AFG(2) to 62 ng/g for DON. The method was successfully applied to the determination of these mycotoxins in 45 cereal samples obtained from the Malaysian market. The results indicated that the method can be applied for the multi-mycotoxin determination of cereals.
  11. Shaari NA, Ahmad Tarmizi AH, Md Sikin A
    PMID: 33332229 DOI: 10.1080/19440049.2020.1845400
    The study aimed to establish the detection method for bound 3-, 2-MCPD, and glycidol using accelerated solvent extraction (ASE) and gas chromatography mass spectrometry (GC-MS). The ASE was modified for reduced solvent volume and process time to extract lipid from the chocolate spread, infant formula, potato chips, and sweetened creamer. The solvent selected for ASE was a mixture of iso-hexane and acetone at 100°C with the lipid and analyte recovery ranging from 96.9% to 98.6% and 84.1% to 107.5%, respectively. The derivatisation of analytes was adopted from the AOCS method Cd29a-13 for GC-MS analysis. The results showed that the coefficient of determination (R2) of all analytes was >0.99. The limit of detection (LOD) was 0.1 mg kg-1 expressed in lipid basis for both bound 3- and 2-MCPD and 0.2 mg kg-1 expressed in lipid basis for bound glycidol. The limit of quantitation (LOQ) was 0.3 mg kg-1 expressed in lipid basis for both bound 3- and 2-MCPD and 0.6 mg kg-1 expressed in lipid basis for bound glycidol. A blank spiked with 3-monochloropropanediols fatty acid esters (MCPDE) and 2-MCPDE (0.3, 2.1, and 7.2 mg kg-1) and glycidol esters (0.6, 4.7, and 16.6 mg kg-1) were chosen for accuracy and precision tests. The recoveries were 91.7% to 105.9%. Both repeatability and within-laboratory reproducibility of the analysis were within the acceptable level of precision ranging from 1.7% to 16%. This is the first time that a full validation procedure extending to both accuracy and precision tests has been carried out for sweetened creamer and chocolate spread. Overall, the combined protocol of ASE and AOCS Cd29a-13 was successfully validated for both solid and liquid food samples with lipid content from 10% to 30%.
  12. Sepahpour S, Selamat J, Khatib A, Manap MYA, Abdull Razis AF, Hajeb P
    PMID: 29913103 DOI: 10.1080/19440049.2018.1488085
    Natural antioxidants in spices and herbs have attracted considerable attention as potential inhibitors against the formation of mutagenic heterocyclic amines (HCAs) in heat-processed meat. In this study, the inhibitory activity of four spices/herbs and their mixtures on HCAs formation in grilled beef were examined. A simplex centroid mixture design with four components comprising turmeric, curry leaf, torch ginger and lemon grass in 19 different proportions were applied on beef samples before grilling at 240 ºC for 10 min. The HCAs were extracted from the samples using solid phase extraction (SPE) method and analysed using Liquid chromatography mass spectrometry LC-MS/MS. All spices/herbs in single or mixture forms were found to reduce total HCA concentrations in marinated grilled beef ranging from 21.2% for beef marinated with curry leaf to 94.7% for the combination of turmeric and lemon grass (50:50 w/w). At the optimum marinade formula (turmeric: lemon grass 52.4%: 47.6%), concentration of 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), Harman, Norharman and AαC were 2.2, 1.4, 0.5, 2.8 and 1.2 ng/g, respectively. The results of the mutagenic activity demonstrated that this optimised marinade formula significantly (p 
  13. Razzak MA, Hamid SB, Ali ME
    PMID: 26437367 DOI: 10.1080/19440049.2015.1087060
    Food forgery has posed considerable risk to public health, religious rituals, personal budget and wildlife. Pig, dog, cat, rat and monkey meat are restricted in most religions, but their sporadic adulteration are rampant. Market controllers need a low-cost but reliable technique to track and trace suspected species in the food chain. Considering the need, here we documented a lab-on-a-chip-based multiplex polymerase chain reaction (PCR) assay for the authentication of five non-halal meat species in foods. Using species-specific primers, 172, 163, 141, 129 and 108-bp sites of mitochondrial ND5, ATPase 6 and cytochrome b genes were amplified to detect cat, dog, pig, monkey and rat species under complex matrices. Species-specificity was authenticated against 20 different species with the potential to be used in food. The targets were stable under extreme sterilisation (121°C at 45 psi for 2.5 h) which severely degrades DNA. The assay was optimised under the backgrounds of various commercial meat products and validated for the analysis of meatballs, burgers and frankfurters, which are popular fast food items across the globe. The assay was tested to detect 0.1% suspected meats under commercial backgrounds of marketed foods. Instead of simplex PCR which detects only one species at a time, such a multiplex platform can reduce cost by at least fivefolds by detecting five different species in a single assay platform.
  14. Rashid NR, Ali ME, Hamid SB, Rahman MM, Razzak MA, Asing, et al.
    PMID: 25906074 DOI: 10.1080/19440049.2015.1039073
    Being the third-largest primate population has not made macaque (Macaca fascicularis sp.) monkeys less exposed to threats and dangers. Despite wildlife protection, they have been widely hunted and consumed in several countries because of their purported nutritional values. In addition to trading as pure bush meats in several places, monkey meat has been sold in meatball and soup products in Indonesia. Thus the possibility of macaque meat trafficking under the label of common meats is quite high. This paper reports the development of a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the shortest amplicon length for the confirmed detection of monkey meat under compromised states which are known to degrade DNA. We amplified a 120-bp region of d-loop gene using a pair of macaque-specific primers and confirmed their specificity for the target species through cross-challenging against 17 different species using a 141-bp site of an 18 S rRNA gene as an endogenous control for eukaryotes. This eliminated the possibilities of any false-negative detection with complex matrices or degraded specimens. The detection limit was 0.00001 ng DNA in a pure state and 0.1% of meat in mixed matrices and commercial meatball products. RFLP analysis further authenticated the originality of the PCR product and distinctive restriction patterns were found upon AluI and CViKI-1 digestion. A micro-fluidic lab-on-a-chip automated electrophoretic system separated the fragments with high resolution. The assay was validated for screening commercial meatball products with sufficient internal control.
  15. Ramli NAS, Roslan NA, Abdullah F, Bilal B, Ghazali R, Abd Razak RA, et al.
    PMID: 37682685 DOI: 10.1080/19440049.2023.2255290
    Esters of 2- and 3-monochloropropanediol (2-MCPDE, 3-MCPDE) and glycidol (GE) are regarded as process contaminants that are found in refined vegetable oils and oil-based foods. Since glycerol is produced during fat splitting, saponification and biodiesel production, it is important to have methods for determining contaminants that might be formed during these processes. Due to the use of glycerol as a food additive, data on the presence of compounds of toxicological concern, including 3-MCPD, are of interest. This study focuses on modifying the indirect analysis of 2-MCPDE, 3-MCPDE and GE using GC-MS based on the AOCS Official Method Cd 29a-13, validating the modified method, and quantifying 2-MCPDE, 3-MCPDE and GE in glycerol. The AOCS Cd 29a-13 method was modified at the initial stage of sample preparation in which the targeted esters were extracted from glycerol by vortex-assisted extraction before sample analysis. This modification was performed based on the polarity of all compounds involved. The calibration functions for all analytes were fitted to linear regression with R2 above 0.99. Limits of detection (LOD) 0.02, 0.01 and 0.02 mg kg-1 were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Spiked glycerol with 3-MCPDE and 2-MCPDE (0.25, 0.51 and 1.01 mg kg-1) and GE (0.58, 1.16 and 2.32 mg kg-1) were used for recovery and precision measurements. Recoveries of 100-108%, 101-103%, and 93-99% were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Acceptable precision levels with relative standard deviations ranged from 3.3% to 8.3% were obtained for repeatability and intermediate precision. The validated method was successfully applied for the analysis of the target compounds in refined glycerol from commercial plants, which showed that 2-MCPDE, 3-MCPDE and GE levels in the analysed samples were below the detection limit.
  16. Ramli MR, Siew WL, Ibrahim NA, Kuntom A, Abd Razak RA
    PMID: 25798697 DOI: 10.1080/19440049.2015.1032368
    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
  17. Raja Nhari RMH, Muhammad Zailani AN, Khairil Mokhtar NF, Hanish I
    PMID: 32027553 DOI: 10.1080/19440049.2020.1717645
    The usage of porcine pepsin or other porcine derivatives in food products is a common practice in European, American and certain Asian countries although it creates issues in religious and personnel health concerns. In this study, porcine pepsin was detected using indirect ELISA that involved the anti-pep80510 polyclonal antibody raised against a specific peptide of porcine pepsin, pep80510. The sensitivity of the assay for standard porcine pepsin was 0.008 µg/g. The immunoassay did not cross-react to other animal rennet and milk proteins except for microbial coagulant from Mucor miehie. The recovery of porcine pepsin in spiked cheese curd within the range of CV < 20% while for porcine pepsin in spiked cheese whey the recovery is also within the range of CV% < 20%.
  18. Raja Nhari RMH, Khairil Mokhtar NF, Hanish I, Hamid M, Mohamed Rashidi MAA, Shahidan NM
    PMID: 29285986 DOI: 10.1080/19440049.2017.1420920
    Detection of porcine plasma using indirect ELISA was developed using mAb B4E1 for the prevention of their usage in human food that creates religious and health conflicts. The immunoassay has a CV 
  19. Raja Nhari RMH, Soh JH, Khairil Mokhtar NF, Mohammad NA, Mohd Hashim A
    PMID: 37535014 DOI: 10.1080/19440049.2023.2242955
    Lateral flow devices (LFDs) are straightforward scientific tools that have made substantial advances in recent years. They have been used in many fields including the meat industry to detect disease markers, determine meat freshness or meat species determination. They are, therefore, significant in the research of meat adulteration by mixed animal species, because food component authenticity is a serious concern encompassing health, economic, legal, and religious issues. Pork adulteration is one of the most crucial issues in the global meat industry. In this review, we discuss the various types of LFDs and recent research on the development of LFDs as an authenticity tool for detecting pig additives in meat-based products, and how regulatory authorities could adopt LFDs for their workflows. Despite the benefits of rapidity, simplicity, low cost, high sensitivity, and specificity, researchers face challenges when using LFD as a final confirmation test. Future directions are suggested for globalising the use of LFD as a halal authentication method.
  20. Rahmani A, Selamat J, Soleimany F
    PMID: 21598138 DOI: 10.1080/19440049.2011.576436
    A reversed-phase HPLC optimization strategy is presented for investigating the separation and retention behavior of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone, simultaneously. A fractional factorial design (FFD) was used to screen the significance effect of seven independent variables on chromatographic responses. The independent variables used were: (X1) column oven temperature (20-40°C), (X2) flow rate (0.8-1.2 ml/min), (X3) acid concentration in aqueous phase (0-2%), (X4) organic solvent percentage at the beginning (40-50%), and (X5) at the end (50-60%) of the gradient mobile phase, as well as (X6) ratio of methanol/acetonitrile at the beginning (1-4) and (X7) at the end (0-1) of gradient mobile phase. Responses of chromatographic analysis were resolution of mycotoxin peaks and HPLC run time. A central composite design (CCD) using response surface methodology (RSM) was then carried out for optimization of the most significant factors by multiple regression models for response variables. The proposed optimal method using 40°C oven temperature, 1 ml/min flow rate, 0.1% acetic acid concentration in aqueous phase, 41% organic phase (beginning), 60% organic phase (end), 1.92 ratio of methanol to acetonitrile (beginning) and 0.2 ratio (end) for X1-X7, respectively, showed good prediction ability between the experimental data and predictive values throughout the studied parameter space. Finally, the optimized method was validated by measuring the linearity, sensitivity, accuracy and precision parameters, and has been applied successfully to the analysis of spiked cereal samples.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links