Displaying publications 1 - 20 of 298 in total

Abstract:
Sort:
  1. Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH, Kubow S, et al.
    Food Chem, 2024 Jun 15;443:138574.
    PMID: 38309026 DOI: 10.1016/j.foodchem.2024.138574
    This study aimed to assess the technique of natural fermentation by applying water kefir to the casein protein. The diverse microorganisms and their enzymes found naturally in the water kefir can influence casein's characteristics. The fermented casein's protein quality (digestibility and secondary protein structure) and composition (total soluble solids and nutritive and non-nutritive substances) were investigated. Our findings revealed that the fermented casein's protein digestibility and total phenolic content increased from 82.46 to 88.60 % and 7.6 to 8.0 mg gallic acid equivalent/100 g, respectively. In addition, their surface charge and hydrophobicity changed from -30.06 to -34.93 mV and 286.9 to 213.7, respectively. Furthermore, the fermented casein's secondary protein components, α-helix (decreased from 13.66 to 8.21 %) and random coil (increased from 16.88 to 19.61 %), were also altered during the fermentation. Based on these findings, the water kefir fermentation approach could be an effective, practical, non-thermal approach for improving casein's protein quality and composition.
  2. Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, et al.
    Food Chem, 2024 Jun 15;443:138545.
    PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545
    The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
  3. Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, et al.
    Food Chem, 2024 May 30;441:138402.
    PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402
    Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
  4. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
  5. Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, et al.
    Food Chem, 2024 Apr 16;438:137994.
    PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994
    Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
  6. Li Y, Zhang Y, Dong L, Li Y, Liu Y, Liu Y, et al.
    Food Chem, 2024 Mar 30;437(Pt 1):137834.
    PMID: 37897817 DOI: 10.1016/j.foodchem.2023.137834
    In this study, strains producing feruloyl esterase were screened by Oxford Cup clear zones method and by evaluating the ability to decompose hydroxycinnamoyl esters. The strain was identified by 16S rDNA molecular biology. The contents of dietary fiber, reducing sugar, water-extractable arabinoxylans, phytic acid, total phenolics, total flavonoid, phenolic compounds composition, microstructure and antioxidant activity in bran before and after fermentation were studied. Eight strains producing feruloyl esterase were screened, among which strain P1 had the strongest ability to decompose hydroxycinnamoyl esters. The strain was identified and named L. fermentum NB02. Compared with unfermented bran, fermented bran exhibited higher contents of soluble dietary fiber, reducing sugar, water-extractable arabinoxylans, total phenolics, total flavonoid, and lower insoluble dietary fiber and phytic acid content. The dense surface structure of bran was destroyed, forming a porous structure. The release of phenolic compounds increased significantly. L. fermentum NB02 fermentation improved the antioxidant capacity of bran.
  7. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
  8. Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, et al.
    Food Chem, 2024 Mar 13;447:138987.
    PMID: 38518621 DOI: 10.1016/j.foodchem.2024.138987
    Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano‑palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 μM and the limit of detection was 0.0033 μM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.
  9. Li Y, Dong L, Liu Y, Chen Q, Wu Z, Liu L, et al.
    Food Chem, 2024 Mar 01;435:137572.
    PMID: 37778268 DOI: 10.1016/j.foodchem.2023.137572
    The effects of covalent binding of protocatechuic acid (PA) and gallic acid (GA) to lactoferrin (LF) on the structure, functional, and antioxidant properties of the protein conjugate were investigated. These protein-phenolic conjugates were produced by laccase cross-linking and ultrasound-assisted free radical grafting, which were characterized using turbidity, particle size, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. Structural changes in conjugates were monitored by endogenous fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD). The antioxidant capacities and pH stability were determined using DPPH, ABTS, FRAP, and potentiometric analysis. The enzymatic cross-linking and free radical grafting yielded LF-PA/GA conjugates with altered hydrodynamic diameter and zeta-potential. Spectroscopic and chromatographic analyses revealed that binding to PA/GA altered the molecular structure of LF, with a decrease in LF isoelectric point post binding to PA/GA, without affecting antioxidant activities. In conclusion, LF-PA/GA conjugates present potential applications in the food industry.
  10. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2024 Mar 01;435:137584.
    PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584
    This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
  11. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Feb 28;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
  12. Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, et al.
    Food Chem, 2024 Feb 16;446:138739.
    PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739
    Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
  13. Li A, Abrahim A, Islam M, Mejías E, Hafizati Abdul Halim N, Frew R, et al.
    Food Chem, 2024 Feb 15;434:137451.
    PMID: 37748289 DOI: 10.1016/j.foodchem.2023.137451
    One of the most common types of adulteration of honey involves the addition of invert sugar syrups. A new method was developed to measure the stable isotope ratios of carbon and carbon-bound non-exchangeable (CBNE) hydrogen from specific molecular positions in fructose and glucose in honey. This was achieved through periodate oxidation of the sugars to produce formaldehyde, followed by reaction with ammonia to form hexamethylenetetramine (HMT). The preparation was simplified, optimized, and validated by isotopic analysis of replicate syntheses of HMT from fructose, glucose, sugar syrup and a representative authentic honey sample. The optimized method had a repeatability standard deviation from 1.5‰ to 3.0‰ and from 0.1‰ to 0.4‰ for δ2H and δ13C, respectively. This methodology has advantages over alternative isotopic methods, for measuring CBNE hydrogen isotope ratios in sugars, in terms of time, sensitivity and operability and offers a complementary method to differentiate authentic honey from invert sugar syrups.
  14. Ren Y, Wei L, Hao Yoong J, Miao Z, Li H, Cao J, et al.
    Food Chem, 2024 Feb 15;434:137450.
    PMID: 37722331 DOI: 10.1016/j.foodchem.2023.137450
    This study aimed to reveal the effect of different basic emulsion structures (W/O/W and O/W) and polysaccharide additions on protein-polysaccharide composite-based emulsion gels utilizing soybean protein isolate, palm oil and konjac glucomannan. The results of texture profile, rheological tests, microstructure observations, and oral tribology showed that basic emulsion structures and konjac glucomannan addition had significant effect on the emulsion gels' properties, while the impact of konjac glucomannan addition was stronger. W/O/W double emulsion gels (DEG) exhibited lower oral friction coefficients and obtained higher scores for oiliness and juiciness during the sensory evaluation. However, O/W single emulsion gels (SEG) displayed a firmer texture and higher chewiness, a 29.62% and 49.57% increase compared to the DEG at 7% konjac glucomannan addition on the hardness and chewiness respectively. It has demonstrated the emulsion gels' potential as cube fat mimetics and feasibility of adjusting their properties by changing the basic emulsion structure.
  15. Yao D, Shen C, Yu J, Tang J, Zhang H, Xu X, et al.
    Food Chem, 2024 Feb 08;445:138691.
    PMID: 38354646 DOI: 10.1016/j.foodchem.2024.138691
    Milk fat globule membrane proteins (MFGMP) in human milks have positive effects on infant's health. As gestational diabetes mellitus (GDM) causes variations in MFGMP, it is essential to understand the effects of GDMon MFGMP. This study aims to investigate and compare the MFGMP (>3 months postpartum) of GDM and non-GDM (NGDM) women using four-dimensional-data-independent-acquisition proteomics technology. Principal component analysis shows significant differences in the MFGMP of GDM and NGDM women. A total of 4747 MFGMP were identified in maturehuman milk of GDM and NGDM women. Among these proteins, 174 differentially expressed proteins (DEPs) were identified in MFGM of GDM and NGDM women. Albumin (FC = 7.96) and transthyretin (FC = 2.57) which are related to insulin resistance and involved in thyroid hormone synthesis, are significantly up-regulated in MFGMP of GDM mothers indicating insulin resistance, imbalance of glucose homeostasis and poor glucose metabolism might persist in postpartum period.
  16. Yang D, Zhang Y, Lee YY, Lu Y, Wang Y, Zhang Z
    Food Chem, 2024 Feb 02;444:138635.
    PMID: 38325087 DOI: 10.1016/j.foodchem.2024.138635
    The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.
  17. Ke W, Lee YY, Cheng J, Tan CP, Lai OM, Li A, et al.
    Food Chem, 2024 Feb 01;433:137374.
    PMID: 37683471 DOI: 10.1016/j.foodchem.2023.137374
    Enzymatic glycerolysis produced ground nut oil-based diacylglycerols (GNO-DAG) with a purity of 43.28 ± 0.89% (GNO-DAG40). GNO-DAG80 (with a DAG purity of 87.33 ± 0.61%) was obtained after purification using molecular distillation. Traditional palm oil was mixed with the "liquid" DAG as margarine base oils. Subsequent evaluations of palm oil-DAG-based fats (PO-GNO DAG) as a margarine replacement in a W/O model system showed that the material was an ideal functional base oil with improved aeration properties and plasticity during application. The binary system physical, textural and crystallization property were determined, and the compatibility of the binary mixed system was analyzed by constructing a phase diagrams. The PO-GNO DAG showed decent compatibility between the two phases and had better texture and rheological properties. In addition, PO-GNO DAG40 showed better apparent viscosity and aeration characteristics than PO-GNO DAG80, with potential application in the food specialty fats industry.
  18. Chua LS, Abdullah FI, Lim TK, Lin Q
    Food Chem, 2024 Jan 30;432:137261.
    PMID: 37651783 DOI: 10.1016/j.foodchem.2023.137261
    This study was aimed to extract bioactive peptides from the white and purple flower varieties of Orthosiphon aristatus leaves. The herb is well known for its pharmacological importance, possibly attributed to its plant proteins. Phenol based extraction was used to extract plant proteins, and then hydrolysed by proteolytic enzymes such as trypsin (serine protease) and pepsin (aspartic protease). MS/MS analysis revealed that 145 and 125 proteins were detected from the white and purple flower varieties, respectively. Trypsin hydrolysates were showed to have a higher degree of hydrolysis (24-33%), resulting in higher antioxidant and antibacterial activities. The white flower of trypsin hydrolysates showed a higher radical scavenging activity which could be attributed to its higher content of stress proteins (19%). However, trypsin hydrolysates from the purple flower showed higher ferric reducing power and bacterial growth inhibition. The performance of hydrolysates was better than ampicillin in inhibiting Acinetobacter baumanni and Staphylococcus aureus.
  19. Sharin SN, Abdullah Sani MS, Kassim NK, Yuswan MH, Abd Aziz A, Jaafar MA, et al.
    Food Chem, 2024 Jan 19;444:138429.
    PMID: 38330597 DOI: 10.1016/j.foodchem.2024.138429
    Stingless bee honey's nutritional value is gaining attention, but the impact of harvesting seasons, specifically the rainy (September 2018) and dry (February 2019) seasons in Malaysia on the honey's physicochemical properties and volatile compounds remains insufficiently explored. This research revealed marginal differences in the physicochemical properties between seasons. However, through individual bee species and cumulative data analysis, honey samples were effectively differentiated based on harvesting seasons. A set of seventeen volatile compounds were identified as potential chemical markers for distinguishing H. bakeri, G. thoracica, and T. binghami honey between rainy and dry seasons. For cumulative data, four significant markers were proposed. These discrimination methods and chemical markers can serve as valuable references in distinguishing stingless bee honey, whether its entomological origin is specified or not between rainy and dry seasons.
  20. Li H, Wan Mustapha WA, Tian G, Dong N, Zhao F, Zhang X, et al.
    Food Chem, 2024 Jan 15;431:137102.
    PMID: 37579608 DOI: 10.1016/j.foodchem.2023.137102
    To enhance the solubility of hydrophobic nutrients, the hydrophobicity of fish scale gelatin hydrolysate (FSGH) was increased with moderate acid or alkali hydrolysis. Acid-induced FSG hydrolysate (AcFSGH) at 3 h showed a superior curcumin loading efficiency (18.30 ± 0.38 μg/mL) among all FSGHs. Compared with FSG, the proportion of hydrophobic amino acids (from 41.1% to 46.4%) and the hydrophobic interaction (from 12.72 to 20.10 mg/mL) was significantly increased in the AcFSGH. Meanwhile, the transformation of the α-helix (from 12.8% to 4.9%) to the β-sheet (from 29.0% to 42.8%) was also observed in the AcFSGH. Based on the observation in the molecular weight and morphological analysis, AcFSGH acquired the best hydrophobic interaction with curcumin, presumably due to the formation of the flexible structure of the linear hydrolyzates. The above results call for an investigation of the role of FSG hydrolysate in the synthesis of nanoparticles loaded with bioactive lipophilic compounds.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links