Displaying publications 1 - 20 of 298 in total

Abstract:
Sort:
  1. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  2. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
  3. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
  4. Zhao Y, Lu K, Piao X, Song Y, Wang L, Zhou R, et al.
    Food Chem, 2023 May 01;407:135157.
    PMID: 36529012 DOI: 10.1016/j.foodchem.2022.135157
    Surimi products have unsatisfactory gel properties. Hence, this study evaluates the effect of collagen-adding on surimi gel properties and provides the first observation results regarding collagen type influence. With higher water solubility and more charged amino acids than type II, collagen type I intertwines with surimi myofibrillar proteins better to induce higher exposure of protein functional domains, more sufficient conformational changes of myosin and greater formation of chemical forces among proteins. These enhancements accelerate the gelation rate, leading to a well-stabilized surimi gel. The collagen I-containing surimi gels show more compact structures with uniformly distributed smaller pores than those containing collagen II, thereby providing the final products with higher water holding capacity and better textural profiles. As such, the surimi gel fortification performance of collagen I and the well-elucidated collagen-myofibrillar protein interaction mechanism will guide the further exploitation of collagen as an effective additive in the food industry.
  5. Zhang Z, Hu Y, Ji H, Lin Q, Li X, Sang S, et al.
    Food Chem, 2023 Jul 30;415:135736.
    PMID: 36863232 DOI: 10.1016/j.foodchem.2023.135736
    Core-shell biopolymer nanoparticles are assembled from a hydrophobic protein (zein) core and a hydrophilic polysaccharide (carboxymethyl dextrin) shell. The nanoparticles were shown to have good stability and the ability to protect quercetin from chemical degradation under long-term storage, pasteurization, and UV irradiation. Spectroscopy analysis shows that electrostatic, hydrogen bonding, and hydrophobic interactions are the main driving forces for the formation of composite nanoparticles. Quercetin coated with nanoparticles significantly enhanced its antioxidant and antibacterial activities and showed good stability and slow release in vitro during simulated gastrointestinal digestion. Furthermore, the encapsulation efficiency of carboxymethyl dextrin-coated zein nanoparticles (81.2%) for quercetin was significantly improved compared with that of zein nanoparticles alone (58.4%). These results indicate that carboxymethyl dextrin-coated zein nanoparticles can significantly improve the bioavailability of hydrophobic nutrient molecules such as quercetin and provide a valuable reference for their application in the field of biological delivery of energy drinks and food.
  6. Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, et al.
    Food Chem, 2024 Jun 15;443:138545.
    PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545
    The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
  7. Zawawi N, Zhang J, Hungerford NL, Yates HSA, Webber DC, Farrell M, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131566.
    PMID: 34823933 DOI: 10.1016/j.foodchem.2021.131566
    Stingless bee honey (SBH) of four stingless bee species (Heterotrigona itama, Geniotrigona thoracica, Tetragonula carbonaria, and Tetragonula hockingsi) from two geographic regions (Malaysia and Australia, n = 36) were studied for their physicochemical parameters, including total phenolic and multi-elemental contents. Sugar analysis confirmed the prominent presence of trehalulose in all samples. All SBH failed to meet the CODEX Standard for honey moisture, free acidity, and total fructose plus glucose levels. One-way ANOVA, principal component analysis (PCA) and hierarchical component analysis (HCA) confirm distinctive differences between Australian and Malaysian SBH with Australian SBH having significantly (P 
  8. Zare D, Muhammad K, Bejo MH, Ghazali HM
    Food Chem, 2013 Aug 15;139(1-4):320-5.
    PMID: 23561112 DOI: 10.1016/j.foodchem.2012.12.040
    Histamine, putrescine cadaverine and cis-urocanic acid (UCA) have all been implicated or suggested in scombroid fish poisoning. However, there is little information on UCA especially during storage. Changes in their contents during storage of whole Indian mackerel at 0, 3±1, 10±1 for up to 15 days and 23±2°C for up to 2 days were monitored. Fresh muscles contained 14.83 mg/kg trans-UCA, 2.23 mg/kg cis-UCA and 1.86 mg/kg cadaverine. Histamine and putrescine were not detected. After 15 days at 0 and 3°C, trans-UCA content increased to 52.83 and 189.51 mg/kg, respectively, and decreased to <2 mg/kg at the other two temperatures. Storage at 10°C also resulted in an increase in trans-UCA after 3 days, only to decrease after 6 days. The concentration of cis-UCA increased nearly 13-fold after 15 days at 0 and 3°C, decreased at 10°C and remained unchanged at 23°C. Histamine, putrescine and cadaverine levels increased significantly (P value<0.05) at all temperatures especially at 23°C.
  9. Zare D, Ghazali HM
    Food Chem, 2017 Apr 15;221:936-943.
    PMID: 27979297 DOI: 10.1016/j.foodchem.2016.11.071
    There is an increasing concern about the quality and quality assessment procedures of seafood. In the present study, a model to assess fish quality based on biogenic amine contents using fuzzy logic model (FLM) is proposed. The fish used was sardine (Sardinella sp.) where the production of eight biogenic amines was monitored over fifteen days of storage at 0, 3 and 10°C. Based on the results, histamine, putrescine and cadaverine were selected as input variables and twelve quality grades were considered for quality of fish as output variables for the FLM. Input data were processed by rules established in the model and were then defuzzified according to defined output variables. Finally, the quality of fish was evaluated using the designed model and Pearson correlation between storage times with quality of fish showed r=0.97, 0.95 and 1 for fish stored at 0, 3 and 10°C, respectively.
  10. Zainudin MAM, Poojary MM, Jongberg S, Lund MN
    Food Chem, 2019 Nov 30;299:125132.
    PMID: 31299519 DOI: 10.1016/j.foodchem.2019.125132
    Protein oxidation of beef patties stored in high oxygen modified atmosphere packaging for 9 days was investigated. Meat was either stored in the dark, under light, or in the dark with addition of FeCl2/H2O2/myoglobin (forced oxidation). SDS-PAGE analysis showed high degree of protein polymerization for meat exposed to light, compared to the other samples. Light exposure induced reducible (disulfide) and non-reducible cross-links, while mainly disulfides were formed in meat stored in the dark. Light exposure was responsible for 58% loss of free thiols (Cys residues). No significant loss of other amino acid residues was observed and none of the most common oxidation products of tryptophan, tyrosine, and phenylalanine were detected. Intrinsic fluorescence measurements of tryptophan showed 27% loss in samples exposed to light, which was ascribed to loss of protein solubility via protein polymerization rather than tryptophan oxidation. Protein carbonyls were mainly detected in forced oxidized samples at Day 0.
  11. Zainudin MAM, Jongberg S, Lund MN
    Food Chem, 2021 Jan 01;334:127611.
    PMID: 32712493 DOI: 10.1016/j.foodchem.2020.127611
    Plant polyphenols applied as natural antioxidant ingredients, are known to bind to cysteine residues on meat proteins. The aim of this study was to examine the effect of light exposure on the formation of cysteine-phenol adduct in meat added 4-methylcatechol (4MC), a model polyphenol, during storage through quantitative LC-MS/MS-based analysis. Cysteine-4-methylcatechol adduct (Cys-4MC) formation in meat added 1500 ppm 4-MC increased significantly (by 50%) when stored under light in oxygen at 4 °C for 7 days as compared to storage in the dark. This was reflected by a significant decrease in thiol concentrations in the same sample. Gel electrophoresis showed loss in myosin heavy chain (MHC), and a resulting increase in cross-linked MHC (CL-MHC) and larger protein polymers in samples added 4MC. Protein blots stained with nitroblue tetrazolium (NBT) showed intensive protein-polyphenol binding in the meat samples added 4MC, but no major differences between storage conditions.
  12. Zainudin BH, Salleh S, Mohamed R, Yap KC, Muhamad H
    Food Chem, 2015 Apr 1;172:585-95.
    PMID: 25442595 DOI: 10.1016/j.foodchem.2014.09.123
    An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl.
  13. Zainudin BH, Salleh S, Yaakob AS, Mohamed R
    Food Chem, 2021 Aug 06;368:130778.
    PMID: 34391100 DOI: 10.1016/j.foodchem.2021.130778
    Multiresidue quantitative and qualitative screening method for the analysis of pesticide residues in dried cocoa beans was validated and applied to imported and domestic cocoa beans samples. The quantitative method comprises of 15 pesticides while the screening method covers 110 pesticides of different chemical classes. The method was based on modified QuEChERS (Quick Easy Cheap Efficient Rugged Safe) extraction and detection using triple quadrupole (QQQ-MS) and ion mobility quadrupole time of flight mass spectrometry (IMS-QTOF). The method was quantitatively validated in terms of linearity, limit of quantification (LOQ), specificity, selectivity, accuracy, and precision. On the other hand, screening detection limits were established for 110 pesticides. Finally, the optimized strategy was successfully applied for the routine analysis of pesticide residues in 137 cocoa bean samples and 32% of the total samples were found positive for ametryn, chlorpyrifos, isoprocarb, and metalaxyl.
  14. Zaini NA, Osman A, Hamid AA, Ebrahimpour A, Saari N
    Food Chem, 2013 Jan 15;136(2):407-14.
    PMID: 23122078 DOI: 10.1016/j.foodchem.2012.08.034
    Membrane-bound polyphenoloxidase (mPPO) an oxidative enzyme which is responsible for the undesirable browning reaction in Snake fruit (Salacca zalacca (Gaertn.) Voss) was investigated. The enzyme was extracted using a non-ionic detergent (Triton X-114), followed by temperature-induced phase partitioning technique which resulted in two separate layers (detergent-poor phase at the upper layer and detergent-rich phase at the lower layer). The upper detergent-poor phase extract was subsequently fractionated by 40-80% ammonium sulfate and chromatographed on HiTrap Phenyl Sepharose and Superdex 200 HR 10/30. The mPPO was purified to 14.1 folds with a recovery of 12.35%. A single prominent protein band appeared on native-PAGE and SDS-PAGE implying that the mPPO is a monomeric protein with estimated molecular weight of 38kDa. Characterization study showed that mPPO from Snake fruit was optimally active at pH 6.5, temperature 30°C and active towards diphenols as substrates. The K(m) and V(max) values were calculated to be 5.46 mM and 0.98 U/ml/min, respectively, when catechol was used as substrate. Among the chemical inhibitors tested, l-cysteine showed the best inhibitory effect, with an IC(50) of 1.3 ± 0.002 mM followed by ascorbic acid (1.5 ± 0.06 mM), glutathione (1.5 ± 0.07 mM), EDTA (100 ± 0.02 mM) and citric acid (186 ± 0.16 mM).
  15. Zaharudin N, Staerk D, Dragsted LO
    Food Chem, 2019 Jan 01;270:481-486.
    PMID: 30174076 DOI: 10.1016/j.foodchem.2018.07.142
    A 5 mg/mL solution of water, methanol and acetone extracts of seaweeds were used for α-glucosidase inhibition assay hyphenated with high performance liquid chromatography-mass spectrometry (HPLC-HRMS). The results showed acetone extracts of Undaria pinnatifida has the strongest inhibitory effect against α-glucosidase activity with IC50 0.08 ± 0.002 mg/mL. The active compound found in Undaria pinnatifida was identified as fucoxanthin. Analytical standard sample of fucoxanthin significantly inhibited α-glucosidase with IC50 value 0.047 ± 0.001 mg/mL. An inhibition kinetics study indicates that fucoxanthin is showing mixed-type inhibition. These results suggest that Undaria pinnatifida has a potential to inhibit α-glucosidase and may be used as a bioactive food ingredient for glycaemic control.
  16. Zaharudin N, Salmeán AA, Dragsted LO
    Food Chem, 2018 Apr 15;245:1196-1203.
    PMID: 29287342 DOI: 10.1016/j.foodchem.2017.11.027
    Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ± 0.02 mg/ml and 0.81 ± 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010-0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.
  17. Yuswan MH, A Jalil NH, Mohamad H, Keso S, Mohamad NA, Tengku Md Yusoff TS, et al.
    Food Chem, 2021 Feb 01;337:127762.
    PMID: 32777563 DOI: 10.1016/j.foodchem.2020.127762
    Gelatin and collagen are considered halal-critical ingredients as they are typically derived from either bovine or porcine animals. Current analytical methods for determining the sources of gelatin and collagen suffer from limitations in terms of robustness and false positives in peptide matching. Thus, the aim of this study was to investigate the utility of monitoring hydroxyproline, a signature amino acid for gelatin and collagen, for identifying potentially haram foodstuffs. To determine the hydroxyproline profiles among animal- and plant-based samples, one-way univariate analysis of variance followed by pair-wise comparison was used to establish statistical significance. Multivariate chemometric analysis through principal component analysis revealed a discrete distribution pattern among 59 samples due to hydroxyproline variability. Finally, inter- and intra-laboratory comparisons demonstrated the validity and robustness of hydroxyproline determination according to ISO 17025. Thus, this preliminary identification technique will aid the identification of potentially haram foodstuffs.
  18. Yung YL, Lakshmanan S, Kumaresan S, Chu CM, Tham HJ
    Food Chem, 2023 Dec 15;429:136913.
    PMID: 37506659 DOI: 10.1016/j.foodchem.2023.136913
    The 3-Monochloropropane-1, 2-diol ester (3-MCPDE) and glycidyl ester (GE) are formed at high processing temperatures with the presence of respective precursors. Both are potentially harmful to humans, causing adverse health impacts including kidney damage, reproductive problems, and increased risk of cancer. The presence of 3-MCPDE and GE in palm oil is of particular concern because of its widespread use by the food industry. There are a variety of methods for reducing 3-MCPDE and GE. For example, water washing eliminates mostly inorganic chlorides that, in turn, reduce the formation of 3-MCPDE. 3-MCPDE has also been reduced by up to 99% using combinations of methods and replacing stripping steam with alcohol-based media. Activated carbon, clay, antioxidants, potassium-based salts, and other post-refining steps have positively lowered GE, ranging from 10 to 99%. Several approaches have been successful in reducing these process contaminants without affecting other quality metrics.
  19. Yudthavorasit S, Wongravee K, Leepipatpiboon N
    Food Chem, 2014 Sep 01;158:101-11.
    PMID: 24731320 DOI: 10.1016/j.foodchem.2014.02.086
    Chromatographic fingerprints of gingers from five different ginger-producing countries (China, India, Malaysia, Thailand and Vietnam) were newly established to discriminate the origin of ginger. The pungent bioactive principles of ginger, gingerols and six other gingerol-related compounds were determined and identified. Their variations in HPLC profiles create the characteristic pattern of each origin by employing similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). As results, the ginger profiles tended to be grouped and separated on the basis of the geographical closeness of the countries of origin. An effective mathematical model with high predictive ability was obtained and chemical markers for each origin were also identified as the characteristic active compounds to differentiate the ginger origin. The proposed method is useful for quality control of ginger in case of origin labelling and to assess food authenticity issues.
  20. You W, Wang C, Zhang J, Ru X, Xu F, Wu Z, et al.
    Food Chem, 2024 Feb 28;446:138866.
    PMID: 38430769 DOI: 10.1016/j.foodchem.2024.138866
    Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links