Displaying publications 1 - 20 of 128 in total

Abstract:
Sort:
  1. Zhang J, Zhong L, Wang P, Song J, Shi C, Li Y, et al.
    Foods, 2024 Jan 22;13(2).
    PMID: 38275709 DOI: 10.3390/foods13020342
    Flavor is a crucial parameter for assessing the sensory quality of yak milk. However, there is limited information regarding the factors influencing its taste. In this study, the effects of endogenous lipoprotein lipase (LPL) on the volatile flavor components of yak milk under storage conditions of 4 °C, 18 °C and 65 °C were analyzed via headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with orthogonal partial least-squares (OPSL) discrimination, and the reasons for the changes in yak milk flavors were investigated. Combined with the difference in the changes in volatile flavor substance before and after the action of LPL, LPL was found to have a significant effect on the flavor of fresh yak milk. Fresh milk was best kept at 4 °C for 24 h and pasteurized for more than 24 h. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to characterize the volatile components in yak milk under various treatment conditions. Twelve substances with significant influence on yak milk flavor were identified by measuring their VIP values. Notably, 2-nonanone, heptanal, and ethyl caprylate exhibited OAV values greater than 1, indicating their significant contribution to the flavor of yak milk. Conversely, 4-octanone and 2-heptanone displayed OAV values between 0.1 and 1, showing their important role in modifying the flavor of yak milk. These findings can serve as monitoring indicators for assessing the freshness of yak milk.
  2. Qiu C, Liu Y, Chen C, Lee YY, Wang Y
    Foods, 2023 Dec 10;12(24).
    PMID: 38137235 DOI: 10.3390/foods12244431
    Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.
  3. Wang Y, Shi H, Zhang Y, Li X, Zhao M, Sun B
    Foods, 2023 Nov 22;12(23).
    PMID: 38231600 DOI: 10.3390/foods12234210
    Food self-sufficiency has long been regarded as essential for understanding and managing urban and regional food systems; however, few studies have examined the food self-sufficiency of megacity regions within a comprehensive framework that distinguishes different types of agricultural land (i.e., arable land, horticultural landscapes, and waters). To fill these gaps, we took the Pearl River Delta as a case study and quantified the foodsheds of different types of agricultural land by calculating the land footprint of food consumption. On this basis, food self-sufficiency is defined as the ratio of available and required agricultural area for regional food demand. The results indicated that the self-sufficiency level provided by the arable land in the Pearl River Delta is low and cannot realize self-sufficiency at the regional and urban levels. The horticultural landscapes can provide self-sufficiency at the regional level, whereas the regions with water cannot, as their foodsheds extend over the boundary of the Pearl River Delta. For arable land, establishing a localized regional food system requires expanding the foodshed size. These findings provide evidence that megacity regions may face increasing difficulties in achieving self-sufficiency in the near future. This research can improve policymakers' understanding of the sustainability and resilience of regional food systems in megacity regions.
  4. Akbar J, Gul M, Jahangir M, Adnan M, Saud S, Hassan S, et al.
    Foods, 2023 Nov 21;12(23).
    PMID: 38231601 DOI: 10.3390/foods12234200
    The demand for ethical foods is rising, with halal foods playing a significant role in this trend. However, halal standards vary globally, which can have substantial implications. Multiple Halal Certification Bodies (HCBs) can approve food products but they often prioritize national regulations over international alignment. To explore the similarities and differences in halal standards, we conducted a critical analysis of various standards, including Pakistan's halal standards, the Standards and Metrology Institute for Islamic Countries, Majlis Ugama Islam Singapore, Majelis Ulama Indonesia, GCC Standardization Organization, Jabatan Kemajuan Islam Malaysia, ASEAN General Guideline, and the halal standards of Thailand, Iran, and Brunei, through a literature survey. While some commonalities exist, differences stemming from various Islamic schools of thought pose challenges for regulators, consumers, and food producers. Controversial issues include stunning, slaughtering, aquatic animals, insects, and labeling requirements. For example, all standards except the GSO allow non-Muslim slaughterers, and stunning is permitted in all standards except those of Pakistan. These disparities underscore the need for standardization and harmonization in the halal food industry to meet the growing demand for ethical foods.
  5. Jia XZ, Yao QB, Zhang B, Tan CP, Zeng XA, Huang YY, et al.
    Foods, 2023 Nov 16;12(22).
    PMID: 38002208 DOI: 10.3390/foods12224151
    Novel hierarchical metal-organic framework/chitosan aerogel composites were developed for oil bleaching. UiO-66-COOH-type metal organic frameworks (Zr-MOFs) were synthesized and integrated onto a chitosan matrix with different contents and named MOF-aerogel-1 and MOF-aerogel-2. Due to the compatibility of chitosan, the carboxylic zirconium MOF-aerogels not only maintained the inherent chemical accessibility of UiO-66-COOH, but the unique crystallization and structural characteristics of these MOF nanoparticles were also preserved. Through 3-dimensional reconstructed images, aggregation of the UiO-66-COOH particles was observed in MOF-aerogel-1, while the MOF was homogeneously distributed on the surface of the chitosan lamellae in MOF-aerogel-2. All aerogels, with or without immobilized MOF nanoparticles, were capable of removing carotenoids during oil bleaching. MOF-aerogel-2 showed the most satisfying removal proportions of 26.6%, 36.5%, and 47.2% at 50 °C, 75 °C, and 100 °C, respectively, and its performance was very similar to that of commercial activated clay. The reuse performance of MOF-aerogel-2 was tested, and the results showed its exceptional sustainability for carotenoid removal. These findings suggested the effectiveness of the MOFaerogel for potential utilization in oil bleaching treatments.
  6. Novik TS, Koveshnikova EI, Kotlobay AA, Sycheva LP, Kurochkina KG, Averina OA, et al.
    Foods, 2023 Nov 08;12(22).
    PMID: 38002123 DOI: 10.3390/foods12224065
    This article presents the results of a comprehensive toxicity assessment of brazzein and monellin, yeast-produced recombinant sweet-tasting proteins. Excessive sugar consumption is one of the leading dietary and nutritional problems in the world, resulting in health complications such as obesity, high blood pressure, and cardiovascular disease. Although artificial small-molecule sweeteners widely replace sugar in food, their safety and long-term health effects remain debatable. Many sweet-tasting proteins, including thaumatin, miraculin, pentadin, curculin, mabinlin, brazzein, and monellin have been found in tropical plants. These proteins, such as brazzein and monellin, are thousands-fold sweeter than sucrose. Multiple reports have presented preparations of recombinant sweet-tasting proteins. A thorough and comprehensive assessment of their toxicity and safety is necessary to introduce and apply sweet-tasting proteins in the food industry. We experimentally assessed acute, subchronic, and chronic toxicity effects, as well as allergenic and mutagenic properties of recombinant brazzein and monellin. Our study was performed on three mammalian species (mice, rats, and guinea pigs). Assessment of animals' physiological, biochemical, hematological, morphological, and behavioral indices allows us to assert that monellin and brazzein are safe and nontoxic for the mammalian organism, which opens vast opportunities for their application in the food industry as sugar alternatives.
  7. Zhai Y, Zhang H, Xing J, Sang S, Zhan X, Liu Y, et al.
    Foods, 2023 Oct 31;12(21).
    PMID: 37959100 DOI: 10.3390/foods12213981
    In recent years, the blending of hydrocolloids and natural starch to improve the properties of natural starch has become a research hotspot. In this study, the effects of pectin (PEC) on the retrogradation properties and in vitro digestibility of waxy rice starch (WRS) were investigated. The results showed that PEC could significantly (p < 0.05) reduce the retrogradation enthalpy and reduce the hardness of WRS gel. X-ray diffraction results indicated that PEC could reduce the relative crystallinity of the composite system, and the higher the PEC content, the lower the relative crystallinity. When the PEC content was 10%, the relative crystallinity of the composite system was only 10.6% after 21 d of cold storage. Fourier transform infrared spectroscopy results proved that the interaction between PEC and WRS was mainly a hydrogen bond interaction. Furthermore, after 21 d of cold storage, the T23 free water signal appeared in the natural WRS paste, while only a small free water signal appeared in the compound system with 2% PEC addition. Moreover, addition of PEC could reduce the starch digestion rate and digestibility. When the content of PEC increased from 0% to 10%, the digestibility decreased from 82.31% to 71.84%. This study provides a theoretical basis for the further application of hydrocolloids in starch-based foods.
  8. Ma N, Sun M, Shi H, Xue L, Zhang M, Yang W, et al.
    Foods, 2023 Oct 20;12(20).
    PMID: 37893744 DOI: 10.3390/foods12203853
    Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens.
  9. Zou X, Wei Y, Zhu J, Sun J, Shao X
    Foods, 2023 Sep 28;12(19).
    PMID: 37835272 DOI: 10.3390/foods12193619
    This study aims to evaluate the antifungal effects of volatile organic compounds (VOCs) produced by a marine biocontrol yeast, Scheffersomyces spartinae W9. The results showed that the VOCs from the yeast inhibited the growth of Botrytis cinerea mycelium and spore germination by 77.8% and 58.3%, respectively. Additionally, it reduced the disease incidence and lesion diameter of gray mold on the strawberry fruit surface by 20.7% and 67.4%, respectively. Electronic micrographs showed that VOCs caused damage to the morphology and ultrastructure of the hyphae. Based on headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS), S. spartinae W9 emitted 18 main VOCs, and the pure substance of VOCs, such as 3-methyl-1-butanol, 2-methyl-1-butanol, 2-phenylethanol, and isoamyl acetate, showed antifungal effects against B. cinerea mycelium growth. Among them, 2-phenylethanol exhibited the strongest antifungal activity. It has been concluded that VOCs are the key antifungal mechanism of S. spartinae W9, and a promising strategy for controlling gray mold on strawberry fruit.
  10. Naomi R, Teoh SH, Embong H, Balan SS, Othman F, Mamat-Hamidi K, et al.
    Foods, 2023 Sep 26;12(19).
    PMID: 37835227 DOI: 10.3390/foods12193575
    Maternal obesity, characterized by an elevated body mass index (BMI) during pregnancy, is known to have adverse effects on the offspring. However, a recent study suggests that Elateriospermum tapos (E. tapos) yogurt may hold potential in mitigating excessive weight retention post-pregnancy. Thus, this study aims to employ network pharmacology to explore the pharmacological effects of the bioactive compounds present in E. tapos yogurt against maternal obesity. Initially, a screening process is conducted to identify the bioactive compounds in E. tapos yogurt, followed by the prediction of potential gene targets for these compounds using Swiss Target Prediction and the SuperPred databases. Maternal obesity-associated genes are sourced from the OMIM, DisGeNet, and GeneCards databases. The interaction between the identified compounds and maternal obesity genes is established via protein-protein interaction analysis, gene ontology examination, and KEGG pathway analysis. To validate the results, molecular docking studies are conducted using AutoDock Tools software. The findings reveal that out of the 64 compounds analyzed, three meet the screening criteria, resulting in a total of 380 potential gene targets. Among these targets, 240 are shared with maternal obesity-related genes. Further analysis demonstrates the favorable affinity of these active compounds with key targets, linking them to biological processes involving protein phosphorylation, inflammation, as well as the pathways related to lipid metabolism, atherosclerosis, and the other signaling pathways. In conclusion, this study provides valuable insights into the potential pharmacological effects of the bioactive compounds found in E. tapos yogurt against maternal obesity. These findings open avenues for further exploration and potential therapeutic interventions targeting maternal obesity.
  11. Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L
    Foods, 2023 Sep 14;12(18).
    PMID: 37761131 DOI: 10.3390/foods12183422
    The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
  12. Alibekov RS, Mustapa Kamal SM, Taip FS, Sulaiman A, Azimov AM, Urazbayeva KA
    Foods, 2023 Sep 02;12(17).
    PMID: 37685228 DOI: 10.3390/foods12173296
    Jackfruit is one of the major fruits cultivated in many Asian countries. Jackfruit seeds are generally disposed of into the environment, which causes an environmental concern that leads to biowaste accumulation. The seeds have excellent nutritional value, such as carbohydrates, protein, fats, minerals, and bioactive compounds. Bioactive compounds, such as phenolic, can be recovered from jackfruit seeds that could add value to the food and pharmaceutical industry. Thus, this study focused on utilizing subcritical water to extract the phenolic compounds from jackfruit seeds and correlate them with antioxidant activity (AA). The extraction of phenolic compounds was studied at different temperatures and extraction times. The highest total phenolic compounds (TPC) and AA were obtained by treating the jackfruit seed powder at 210 °C, 30 min, and 15% solid loading under subcritical water extraction (SWE) with 1.84 mg GAE/100 g (TPC) and 86% (AA). High correlation between the extracted TPC and AA of the jackfruit seed extracts was obtained (R2 = 0.96), indicating a significant positive relationship between TPC and AA. A higher amount of TPC was obtained via SWE as compared to Soxhlet extraction (1 h:0.53 mg GAE/100 g and 4 h:1.20 mg GAE/100 g). More pores were detected on the surface of the sample treated by SWE than using Soxhlet extraction. Thus, jackfruit seed extracts can be potentially beneficial in the fortification of fermented dairy or meat products.
  13. Mollazade K, Hashim N, Zude-Sasse M
    Foods, 2023 Aug 28;12(17).
    PMID: 37685176 DOI: 10.3390/foods12173243
    With increasing public demand for ready-to-eat fresh-cut fruit, the postharvest industry requires the development and adaptation of monitoring technologies to provide customers with a product of consistent quality. The fresh-cut trade of pineapples (Ananas comosus) is on the rise, favored by the sensory quality of the product and mechanization of the cutting process. In this paper, a multispectral imaging-based approach is introduced to provide distribution maps of moisture content, soluble solids content, and carotenoids content in fresh-cut pineapple. A dataset containing hyperspectral images (380-1690 nm) and reference measurements in 10 regions of interest of 60 fruit (n = 600) was prepared. Ranking and uncorrelatedness (based on ReliefF algorithm) and subset selection (based on CfsSubset algorithm) approaches were applied to find the most informative wavelengths in which bandpass optical filters or light sources are commercially available. The correlation coefficient and error metrics obtained by cross-validated multilayer perceptron neural network models indicated that the superior selected wavelengths (495, 500, 505, 1215, 1240, and 1425 nm) resulted in prediction of moisture content with R = 0.56, MAPE = 1.92%, soluble solids content with R = 0.52, MAPE = 14.72%, and carotenoids content with R = 0.63, MAPE = 43.99%. Prediction of chemical composition in each pixel of the multispectral images using the calibration models yielded spatially distributed quantification of the fruit slice, spatially varying according to the maturation of single fruitlets in the whole pineapple. Calibration models provided reliable responses spatially throughout the surface of fresh-cut pineapple slices with a constant error. According to the approach to use commercially relevant wavelengths, calibration models could be applied in classifying fruit segments in the mechanized preparation of fresh-cut produce.
  14. Nor NDM, Mullick H, Zhou X, Oloyede O, Houston-Price C, Harvey K, et al.
    Foods, 2023 Aug 24;12(17).
    PMID: 37685121 DOI: 10.3390/foods12173188
    Brassica vegetables are bitter, predominantly because they contain bitter-tasting glucosinolates. Individuals with high bitter taste sensitivity are reported to have lower consumption of bitter vegetables. Studies reported that cooking methods can alter the sensory characteristics of vegetables, increasing acceptability. This study investigated consumer liking of turnip cooked by four methods (boiled-pureed, roasted, steamed-pureed and stir-fried) and related this to sensory characteristics. Additionally, this study examined the effect of the bitter taste genotype on taste perception and liking of the cooked turnip samples. Participants (n = 74) were recruited and the TAS2R38 genotype was measured. Liking, consumption intent, perception of bitterness and sweetness of turnip were evaluated. A sensory profile of the cooked turnip variants was also determined by a trained sensory panel. There were significant differences in the overall (p = 0.001) and taste (p = 0.002) liking between cooking methods. Turnip liking was increased when preparation led to sweeter taste profiles. The TAS2R38 genotype had a significant effect on bitter perception (p = 0.02) but did not significantly affect taste liking. In conclusion, the cooking method affected turnip liking, and the bitter perception in turnip was influenced by the TAS2R38 genotype. However, taste sensitivity did not predict turnip liking in this UK adult cohort.
  15. Khushairay ESI, Ghani MA, Babji AS, Yusop SM
    Foods, 2023 Aug 14;12(16).
    PMID: 37628045 DOI: 10.3390/foods12163046
    This study aims to determine the effects of various alkaline pHs on the nutritional and functional properties of protein isolated from defatted chia flour (DCF). The DCF isolated using alkali extraction method at pH 8.5, 10.0, and 12.0 were coded as CPI-8.5, CPI-10.0, and CPI-12.0, respectively. The highest extraction yield and protein recovery yield was demonstrated by CPI-12.0 (19.10 and 59.63%, respectively), with a total protein content of 74.53%, and glutelin showed the highest portion (79.95%). The CPI-12.0 also demonstrated the most elevated essential (36.87%), hydrophobic (33.81%), and aromatic (15.54%) amino acid content among other samples. The DCF exhibited the highest water (23.90 gg-1) and oil (8.23 gg-1) absorption capacity, whereas the CPI-8.5 showed the highest protein solubility (72.31%) at pH 11. DCF demonstrated the highest emulsifying capacity at pH 11 (82.13%), but the highest stability was shown at pH 5 (82.05%). Furthermore, CPI-12.0 at pH 11 shows the highest foaming capacity (83.16%) and stability (83.10%). Despite that, the CPI-10.0 manifested the highest antioxidant capacity (DPPH: 42.48%; ABTS: 66.23%; FRAP: 0.19), as well as ACE-I (35.67%). Overall, the extraction pH had significant effects in producing chia protein isolates (CPI) with improved nutritional and functional qualities.
  16. Su K, Sun W, Li Z, Huang T, Lou Q, Zhan S
    Foods, 2023 Aug 11;12(16).
    PMID: 37628026 DOI: 10.3390/foods12163027
    In this paper, the effects of different modification orders of microbial transglutaminase (MTGase) and contents of pectin (0.1-0.5%, w/v) on the gelling and structural properties of fish gelatin (FG) and the modification mechanism were studied. The results showed that the addition of pectin could overcome the phenomenon of high-MTGase-induced lower gelling strength of gelatin gels. At a low pectin content, the modification sequences had non-significant influence on the gelling properties of modified FG, but at a higher pectin content (0.5%, w/v), P0.5%-FG-TG had higher gel strength (751.99 ± 10.9 g) and hardness (14.91 ± 0.33 N) values than those of TG-FG-P0.5% (687.67 ± 20.98 g, 12.18 ± 0.45 N). Rheology analysis showed that the addition of pectin normally improved the gelation points and melting points of FG. The structural results showed that the fluorescence intensity of FG was decreased with the increase in pectin concentration. Fourier transform infrared spectroscopy analysis indicated that the MTGase and pectin complex modifications could influence the secondary structure of FG, but the influenced mechanisms were different. FG was firstly modified by MTGase, and then pectin (P-FG-TG) had the higher gelling and stability properties.
  17. Nikmanesh A, Baghaei H, Mohammadi Nafchi A
    Foods, 2023 Aug 04;12(15).
    PMID: 37569224 DOI: 10.3390/foods12152955
    In this research, the antioxidant and antibacterial activities of active films based on potato starch containing Viola odorata extract (VOE) were investigated both in vitro and in chicken fillets. The VOE was added to the starch film formulation at 0, 1, 2, and 3% (w/v). The results showed that by increasing the extract level, the total phenol content and antioxidant and antibacterial activity of the films against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium improved remarkably. The results of the meat tests indicated the significant antioxidant and antimicrobial activity of active films containing different levels of VOE in chicken fillets, and a direct relationship was observed between the concentration of the extract and the functional activity of the films, so with the increase in the concentration of the extract in the films, the rate of lipid oxidation and growth of microorganisms in the chicken fillets decreased significantly during the storage period, and less volatile nitrogen bases, metmyoglobin, and oxidation products were produced in the fillets. In general, the results of this research demonstrated that an active film based on potato starch containing VOE (especially 2 and 3% levels) has the ability to extend the oxidative and microbiological shelf life of chicken fillets during cold storage for at least eight days.
  18. Stephenus FN, Benjamin MAZ, Anuar A, Awang MA
    Foods, 2023 Jul 27;12(15).
    PMID: 37569127 DOI: 10.3390/foods12152859
    Phaleria macrocarpa (Scheff.) Boerl. or 'Mahkota Dewa' is a popular plant found in Malaysia as it is a valuable source of phytochemicals and therapeutic properties. Drying is an essential step in the storage of P. macrocarpa fruits at an industrial level to ensure their availability for a prolonged shelf life as well as preserving their bioactive compounds. Hence, this study evaluates the effect of different temperatures on the drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of P. macrocarpa fruits. The oven-drying process was carried out in this study at temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. Six thin-layer drying models (i.e., Lewis, Page, Henderson and Pabis, two-term exponential, Logarithmic, and Midilli and Kucuk models) were evaluated to study the behaviour of oven-dried P. macrocarpa fruits based on the coefficient of determination (R2), root mean square error (RMSE), and chi-square (χ2). The quality of the oven-dried P. macrocarpa fruits was determined based on their extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl) using ultrasound-assisted extraction. The results showed that the time for moisture removal correspondingly increased in the oven-dried P. macrocarpa fruits. Apparently, the Midilli and Kucuk model is the most appropriate model to describe the drying process. The range of effective moisture diffusivity was 1.22 × 10-8 to 4.86 × 10-8 m2/s, and the activation energy was 32.33 kJ/mol. The oven-dried P. macrocarpa fruits resulted in the highest extraction yield (33.99 ± 0.05%), TPC (55.39 ± 0.03 mg GAE/g), TFC (15.47 ± 0.00 mg RE/g), and DPPH inhibition activity (84.49 ± 0.02%) at 60 °C based on the significant difference (p < 0.05). A strong correlation was seen between the antioxidant activity, TPC, and TFC in the oven-dried P. macrocarpa fruits. The current study suggests that the oven-drying method improved the TPC, TFC, and antioxidant activity of the P. macrocarpa fruits, which can be used to produce functional ingredients in foods and nutraceuticals.
  19. Tan E, Binti Julmohammad N, Koh WY, Abdullah Sani MS, Rasti B
    Foods, 2023 Jul 27;12(15).
    PMID: 37569123 DOI: 10.3390/foods12152855
    Urea is naturally present in milk, yet urea is added intentionally to increase milk's nitrogen content and shelf life. In this study, a total of 50 Ultra heat treatment (UHT) milk samples were spiked with known urea concentrations (0-5 w/v%). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with principal component analysis (PCA), discriminant analysis (DA), and multiple linear regression (MLR) were used for the discrimination and quantification of urea. The PCA was built using 387 variables with higher FL > 0.75 from the first PCA with cumulative variability (90.036%). Subsequently, the DA model was built using the same variables from PCA and demonstrated the good distinction between unadulterated and adulterated milk, with a correct classification rate of 98% for cross-validation. The MLR model used 48 variables with p-value < 0.05 from the DA model and gave R2 values greater than 0.90, with RMSE and MSE below 1 for cross-validation and prediction. The DA and MLR models were then validated externally using a test dataset, which shows 100% correct classification, and the t-test result (p > 0.05) indicated that the MLR could determine the percentage of urea in UHT milk within the permission limit (70 mg/mL). In short, the wavenumbers 1626.63, 1601.98, and 1585.5534 cm-1 are suitable as fingerprint regions for detecting urea in UHT milk.
  20. Abdul Hakim BN, Xuan NJ, Oslan SNH
    Foods, 2023 Jul 27;12(15).
    PMID: 37569118 DOI: 10.3390/foods12152850
    Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links