Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Solanki AK, Autefage H, Rodriguez AR, Agarwal S, Penide J, Mahat M, et al.
    Front Bioeng Biotechnol, 2023;11:1125060.
    PMID: 36970616 DOI: 10.3389/fbioe.2023.1125060
    Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid. Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.
  2. Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, et al.
    Front Bioeng Biotechnol, 2023;11:1160577.
    PMID: 37292094 DOI: 10.3389/fbioe.2023.1160577
    Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
  3. Tahri S, Maarof M, Masri S, Che Man R, Masmoudi H, Fauzi MB
    Front Bioeng Biotechnol, 2023;11:1200618.
    PMID: 37425369 DOI: 10.3389/fbioe.2023.1200618
    Introduction: Plenty of biomaterials have been studied for their application in skin tissue engineering. Currently, gelatin-hydrogel is used to support three-dimensional (3D) skin in vitro models. However, mimicking the human body conditions and properties remains a challenge and gelatin-hydrogels have low mechanical properties and undergo rapid degradation rendering them not suitable for 3D in vitro cell culture. Nevertheless, changing the concentration of hydrogels could overcome this issue. Thus, we aim to investigate the potential of gelatin hydrogel with different concentrations crosslinked with genipin to promote human epidermal keratinocytes and human dermal fibroblasts culture to develop a 3D-in vitro skin model replacing animal models. Methods: Briefly, the composite gelatin hydrogels were fabricated using different concentrations as follows 3%, 5%, 8%, and 10% crosslinked with 0.1% genipin or non-crosslinked. Both physical and chemical properties were evaluated. Results and discussion: The crosslinked scaffolds showed better properties, including porosity and hydrophilicity, and genipin was found to enhance the physical properties. Furthermore, no alteration was prominent in both formulations of CL_GEL 5% and CL_GEL8% after genipin modification. The biocompatibility assays showed that all groups promoted cell attachment, cell viability, and cell migration except for the CL_GEL10% group. The CL_GEL5% and CL_GEL8% groups were selected to develop a bi-layer 3D-in vitro skin model. The immunohistochemistry (IHC) and hematoxylin and eosin staining (H&E) were performed on day 7, 14, and 21 to evaluate the reepithelization of the skin constructs. However, despite satisfactory biocompatibility properties, neither of the selected formulations, CL_GEL 5% and CL_GEL 8%, proved adequate for creating a bi-layer 3D in-vitro skin model. While this study provides valuable insights into the potential of gelatin hydrogels, further research is needed to address the challenges associated with their use in developing 3D skin models for testing and biomedical applications.
  4. Peng Z, Xue H, Liu X, Wang S, Liu G, Jia X, et al.
    Front Bioeng Biotechnol, 2023;11:1222088.
    PMID: 37539434 DOI: 10.3389/fbioe.2023.1222088
    The development of cost-effective, biocompatible soft wound dressings is highly desirable; however, conventional dressings are only designed for flat wounds, which creates difficulty with promising healing efficiency in complex practical conditions. Herein, we developed a tough, adhesive biomimetic hyaluronic acid methacryloyl hydrogels composed of chemically crosslinked hyaluronic acid methacryloyl (HAMA) network and poly(N-hydroxyethyl acrylamide) (PHEAA) network rich in multiple hydrogen bonding. Due to the multiple chemical crosslinking sites (acrylamide groups) of HAMA; the bulk HEMA/PHEAA hydrogels presented significant enhancements in mechanical properties (∼0.45 MPa) than common hyaluronic acid hydrogels (<0.1 MPa). The abundant hydrogen bonding also endowed the resultant hydrogels with extremely high adhesiveness on many nonporous substrates, including glass and biological tissues (e.g., heart, liver, lung, kidney, stomach, and muscle), with a considerable interfacial toughness of ∼1432 J m-2. Accordingly, since both natural hyaluronic acid derivative polymers and hydrophilic PHEAA networks are highly biocompatible, the hydrogel matrix possesses good blood compatibility (<5% of hemolysis ratio) and satisfies the general dressing requirements (>99% of cell viability). Based on these physicochemical features, we have demonstrated that this adhesive hydrogel, administered in the form of a designed patch, could be applied to wound tissue healing by promoting epithelialization, angiogenesis, and collagen deposition. We believe that our proposed biomimetic hydrogel design holds great potential for wound repair and our developed HAMA/PHEAA hydrogels are extremely promising for the next-generation tissue healings in emergency situations.
  5. Surya Teja SP, Damodharan N, Tamilanban T, Subramaniyan V, Chitra V, Chinni SV, et al.
    Front Bioeng Biotechnol, 2023;11:1222693.
    PMID: 37545888 DOI: 10.3389/fbioe.2023.1222693
    The aim of this study was to investigate the influence of excipients on retaining the particle size of methotrexate (MTX) loaded chitosan nanocarriers (CsNP) during lyophilization, which relates to the ability to enlarge the particle size and target specific areas. The nanocarriers were prepared using the ionic gelation technique with tripolyphosphate as a crosslinker. Three lyophilized formulations were used: nanosuspension without Lyoprotectant (NF), with mannitol (NFM), and with sucrose (NFS). The lyophilized powder intended for injection (PI) was examined to assess changes in particle size, product integrity, and comparative biodistribution studies to evaluate targeting ability. After lyophilization, NFS was excluded from in-vivo studies due to the product melt-back phenomenon. The particle size of the NF lyophile significantly increased from 176 nm to 261 nm. In contrast, NFM restricted the nanocarrier size to 194 nm and exhibited excellent cake properties. FTIR, XRD, and SEM analysis revealed the transformation of mannitol into a stable β, δ polymorphic form. Biodistribution studies showed that the nanocarriers significantly increased MTX accumulation in tumor tissue (NF = 2.04 ± 0.27; NFM = 2.73 ± 0.19) compared to the marketed PI (1.45 ± 0.25 μg), but this effect was highly dependent on the particle size. Incorporating mannitol yielded positive results in restricting particle size and favoring successful tumor targeting. This study demonstrates the potential of chitosan nanocarriers as promising candidates for targeted tumor drug delivery and cancer treatment.
  6. Yu L, Jiang H, Mei Q, Mohamad NI, Fernandez J, Gu Y
    Front Bioeng Biotechnol, 2023;11:1229574.
    PMID: 37614628 DOI: 10.3389/fbioe.2023.1229574
    Introduction: Playing badminton has been reported with extensive health benefits, while main injuries were documented in the lower extremity. This study was aimed to investigate and predict the knee- and ankle-joint loadings of athletes who play badminton, with "gold standard" facilities. The axial impact acceleration from wearables would be used to predict joint moments and contact forces during sub-maximal and maximal lunge footwork. Methods: A total of 25 badminton athletes participated in this study, following a previously established protocol of motion capture and musculoskeletal modelling techniques with the integration of a wearable inertial magnetic unit (IMU). We developed a principal component analysis (PCA) statistical model to extract features in the loading parameters and a multivariate partial least square regression (PLSR) machine learning model to correlate easily collected variables, such as the stance time, approaching velocity, and peak accelerations, with knee and ankle loading parameters (moments and contact forces). Results: The key variances of joint loadings were observed from statistical principal component analysis modelling. The promising accuracy of the partial least square regression model using input parameters was observed with a prediction accuracy of 94.52%, while further sensitivity analysis found a single variable from the ankle inertial magnetic unit that could predict an acceptable range (93%) of patterns and magnitudes of the knee and ankle loadings. Conclusion: The attachment of this single inertial magnetic unit sensor could be used to record and predict loading accumulation and distribution, and placement would exhibit less influence on the motions of the lower extremity. The intelligent prediction of loading patterns and accumulation could be integrated to design training and competition schemes in badminton or other court sports in a scientific manner, thus preventing fatigue, reducing loading-accumulation-related injury, and maximizing athletic performance.
  7. Mohd Isa IL, Zulkiflee I, Ogaili RH, Mohd Yusoff NH, Sahruddin NN, Sapri SR, et al.
    Front Bioeng Biotechnol, 2023;11:1296531.
    PMID: 38149172 DOI: 10.3389/fbioe.2023.1296531
    Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.
  8. Tang HJ, Neoh SZ, Sudesh K
    Front Bioeng Biotechnol, 2022;10:1057067.
    PMID: 36545679 DOI: 10.3389/fbioe.2022.1057067
    Polyhydroxyalkanoates (PHAs) have garnered global attention to replace petroleum-based plastics in certain applications due to their biodegradability and sustainability. Among the different types of PHAs, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] copolymer has similar properties to commodity plastics, making them a suitable candidate to replace certain types of single-use plastics, medical devices, and packaging materials. The degradation rate of P(3HB-co-3HHx) is faster than the commercial petroleum-based plastics which take a very long time to be degraded, causing harmful pollution to both land and marine ecosystem. The biodegradability of the P(3HB-co-3HHx) is also dependent on its 3HHx molar composition which in turn influences the crystallinity of the material. Various metabolic pathways like the common PHA biosynthesis pathway, which involves phaA, phaB, and phaC, β-oxidation, and fatty acids de novo synthesis are used by bacteria to produce PHA from different carbon sources like fatty acids and sugars, respectively. There are various factors affecting the 3HHx molar composition of P(3HB-co-3HHx), like PhaCs, the engineering of PhaCs, and the metabolic engineering of strains. It is crucial to control the 3HHx molar composition in the P(3HB-co-3HHx) as it will affect its properties and applications in different fields.
  9. Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, et al.
    Front Bioeng Biotechnol, 2022;10:1013354.
    PMID: 36568300 DOI: 10.3389/fbioe.2022.1013354
    Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
  10. Tan FHP, Nadir N, Sudesh K
    Front Bioeng Biotechnol, 2022;10:879476.
    PMID: 35646848 DOI: 10.3389/fbioe.2022.879476
    The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
  11. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al.
    Front Bioeng Biotechnol, 2022;10:874742.
    PMID: 35464722 DOI: 10.3389/fbioe.2022.874742
    Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
  12. Yu L, Mei Q, Xiang L, Liu W, Mohamad NI, István B, et al.
    Front Bioeng Biotechnol, 2021;9:629809.
    PMID: 33842444 DOI: 10.3389/fbioe.2021.629809
    Ground reaction force (GRF) is a key metric in biomechanical research, including parameters of loading rate (LR), first impact peak, second impact peak, and transient between first and second impact peaks in heel strike runners. The GRFs vary over time during stance. This study was aimed to investigate the variances of GRFs in rearfoot striking runners across incremental speeds. Thirty female and male runners joined the running tests on the instrumented treadmill with speeds of 2.7, 3.0, 3.3, and 3.7 m/s. The discrete parameters of vertical average loading rate in the current study are consistent with the literature findings. The principal component analysis was modeled to investigate the main variances (95%) in the GRFs over stance. The females varied in the magnitude of braking and propulsive forces (PC1, 84.93%), whereas the male runners varied in the timing of propulsion (PC1, 53.38%). The female runners dominantly varied in the transient between the first and second peaks of vertical GRF (PC1, 36.52%) and LR (PC2, 33.76%), whereas the males variated in the LR and second peak of vertical GRF (PC1, 78.69%). Knowledge reported in the current study suggested the difference of the magnitude and patterns of GRF between male and female runners across different speeds. These findings may have implications for the prevention of sex-specific running-related injuries and could be integrated with wearable signals for the in-field prediction and estimation of impact loadings and GRFs.
  13. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
  14. Hostettler IC, Jayashankar N, Bikis C, Wanderer S, Nevzati E, Karuppiah R, et al.
    Front Bioeng Biotechnol, 2021;9:659413.
    PMID: 34239858 DOI: 10.3389/fbioe.2021.659413
    Background and purpose: Tumorous lesions developing in the cerebellopontine angle (CPA) get into close contact with the 1st (cisternal) and 2nd (meatal) intra-arachnoidal portion of the facial nerve (FN). When surgical damage occurs, commonly known reconstruction strategies are often associated with poor functional recovery. This article aims to provide a systematic overview for translational research by establishing the current evidence on available clinical studies and experimental models reporting on intracranial FN injury. Methods: A systematic literature search of several databases (PubMed, EMBASE, Medline) was performed prior to July 2020. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Included clinical studies were reviewed and categorized according to the pathology and surgical resection strategy, and experimental studies according to the animal. For anatomical study purposes, perfusion-fixed adult New Zealand white rabbits were used for radiological high-resolution imaging and anatomical dissection of the CPA and periotic skull base. Results: One hundred forty four out of 166 included publications were clinical studies reporting on FN outcomes after CPA-tumor surgery in 19,136 patients. During CPA-tumor surgery, the specific vulnerability of the intracranial FN to stretching and compression more likely leads to neurapraxia or axonotmesis than neurotmesis. Severe FN palsy was reported in 7 to 15 % after vestibular schwannoma surgery, and 6% following the resection of CPA-meningioma. Twenty-two papers reported on experimental studies, out of which only 6 specifically used intracranial FN injury in a rodent (n = 4) or non-rodent model (n = 2). Rats and rabbits offer a feasible model for manipulation of the FN in the CPA, the latter was further confirmed in our study covering the radiological and anatomical analysis of perfusion fixed periotic bones. Conclusion: The particular anatomical and physiological features of the intracranial FN warrant a distinguishment of experimental models for intracranial FN injuries. New Zealand White rabbits might be a very cost-effective and valuable option to test new experimental approaches for intracranial FN regeneration. Flexible and bioactive biomaterials, commonly used in skull base surgery, endowed with trophic and topographical functions, should address the specific needs of intracranial FN injuries.
  15. Zin NM, Ismail A, Mark DR, Westrop G, Schniete JK, Herron PR
    Front Bioeng Biotechnol, 2021;9:740722.
    PMID: 34712653 DOI: 10.3389/fbioe.2021.740722
    Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.
  16. Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, et al.
    Front Bioeng Biotechnol, 2021;9:735090.
    PMID: 34733829 DOI: 10.3389/fbioe.2021.735090
    Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links