Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, et al.
    PMID: 31380359 DOI: 10.3389/fbioe.2019.00168
    Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
  2. Tang HJ, Neoh SZ, Sudesh K
    Front Bioeng Biotechnol, 2022;10:1057067.
    PMID: 36545679 DOI: 10.3389/fbioe.2022.1057067
    Polyhydroxyalkanoates (PHAs) have garnered global attention to replace petroleum-based plastics in certain applications due to their biodegradability and sustainability. Among the different types of PHAs, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] copolymer has similar properties to commodity plastics, making them a suitable candidate to replace certain types of single-use plastics, medical devices, and packaging materials. The degradation rate of P(3HB-co-3HHx) is faster than the commercial petroleum-based plastics which take a very long time to be degraded, causing harmful pollution to both land and marine ecosystem. The biodegradability of the P(3HB-co-3HHx) is also dependent on its 3HHx molar composition which in turn influences the crystallinity of the material. Various metabolic pathways like the common PHA biosynthesis pathway, which involves phaA, phaB, and phaC, β-oxidation, and fatty acids de novo synthesis are used by bacteria to produce PHA from different carbon sources like fatty acids and sugars, respectively. There are various factors affecting the 3HHx molar composition of P(3HB-co-3HHx), like PhaCs, the engineering of PhaCs, and the metabolic engineering of strains. It is crucial to control the 3HHx molar composition in the P(3HB-co-3HHx) as it will affect its properties and applications in different fields.
  3. Zin NM, Ismail A, Mark DR, Westrop G, Schniete JK, Herron PR
    Front Bioeng Biotechnol, 2021;9:740722.
    PMID: 34712653 DOI: 10.3389/fbioe.2021.740722
    Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.
  4. Layton R, Smith J, Macdonald P, Letchumanan R, Keese P, Lema M
    PMID: 26301217 DOI: 10.3389/fbioe.2015.00110
    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems - examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines.
  5. Hostettler IC, Jayashankar N, Bikis C, Wanderer S, Nevzati E, Karuppiah R, et al.
    Front Bioeng Biotechnol, 2021;9:659413.
    PMID: 34239858 DOI: 10.3389/fbioe.2021.659413
    Background and purpose: Tumorous lesions developing in the cerebellopontine angle (CPA) get into close contact with the 1st (cisternal) and 2nd (meatal) intra-arachnoidal portion of the facial nerve (FN). When surgical damage occurs, commonly known reconstruction strategies are often associated with poor functional recovery. This article aims to provide a systematic overview for translational research by establishing the current evidence on available clinical studies and experimental models reporting on intracranial FN injury. Methods: A systematic literature search of several databases (PubMed, EMBASE, Medline) was performed prior to July 2020. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Included clinical studies were reviewed and categorized according to the pathology and surgical resection strategy, and experimental studies according to the animal. For anatomical study purposes, perfusion-fixed adult New Zealand white rabbits were used for radiological high-resolution imaging and anatomical dissection of the CPA and periotic skull base. Results: One hundred forty four out of 166 included publications were clinical studies reporting on FN outcomes after CPA-tumor surgery in 19,136 patients. During CPA-tumor surgery, the specific vulnerability of the intracranial FN to stretching and compression more likely leads to neurapraxia or axonotmesis than neurotmesis. Severe FN palsy was reported in 7 to 15 % after vestibular schwannoma surgery, and 6% following the resection of CPA-meningioma. Twenty-two papers reported on experimental studies, out of which only 6 specifically used intracranial FN injury in a rodent (n = 4) or non-rodent model (n = 2). Rats and rabbits offer a feasible model for manipulation of the FN in the CPA, the latter was further confirmed in our study covering the radiological and anatomical analysis of perfusion fixed periotic bones. Conclusion: The particular anatomical and physiological features of the intracranial FN warrant a distinguishment of experimental models for intracranial FN injuries. New Zealand White rabbits might be a very cost-effective and valuable option to test new experimental approaches for intracranial FN regeneration. Flexible and bioactive biomaterials, commonly used in skull base surgery, endowed with trophic and topographical functions, should address the specific needs of intracranial FN injuries.
  6. Solanki AK, Autefage H, Rodriguez AR, Agarwal S, Penide J, Mahat M, et al.
    Front Bioeng Biotechnol, 2023;11:1125060.
    PMID: 36970616 DOI: 10.3389/fbioe.2023.1125060
    Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid. Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.
  7. Vigneswari S, Chai JM, Kamarudin KH, Amirul AA, Focarete ML, Ramakrishna S
    Front Bioeng Biotechnol, 2020;8:567693.
    PMID: 33195129 DOI: 10.3389/fbioe.2020.567693
    Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
  8. Curren E, Leaw CP, Lim PT, Leong SCY
    Front Bioeng Biotechnol, 2020;8:562760.
    PMID: 33344429 DOI: 10.3389/fbioe.2020.562760
    Microplastic pollution is a global issue that has a detrimental impact on food safety. In marine environments, microplastics are a threat to marine organisms, as they are often the same size range as prey and are mistaken as food. Consumption of microplastics has led to the damage of digestive organs and a reduction in growth and reproductive output. In this study, microplastic pollution was assessed across three commercially available shrimp species that were obtained from the supermarkets of Singapore. A total of 93 individuals were studied from the Pacific white leg shrimp, Litopenaeus vannamei, the Argentine red shrimp Pleoticus muelleri and the Indian white shrimp Fenneropenaeus indicus. Microplastic fibers, fragments, film and spheres were identified from the digestive tract of these organisms. Microplastic abundance ranged from 13.4 to 7050 items. F. indicus exhibited the highest number of microplastics. Microplastic film was the most abundant in L. vannamei individuals (93-97%) and spheres were the most abundant in P. muelleri (70%) and F. indicus (61%) individuals. This study demonstrates that microplastic contamination is evident in commonly consumed shrimp and highlights the role of shrimp in the trophic transfer and accumulation of microplastics in seafood. The consumption of microplastic-containing seafood is a route of exposure to humans and has implications on human health and food security. Capsule: Microplastics were examined in three shrimp species from the supermarkets of Singapore. Microplastics ranged from 13.4 to 7050 items of shrimp.
  9. Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, et al.
    Front Bioeng Biotechnol, 2023;11:1160577.
    PMID: 37292094 DOI: 10.3389/fbioe.2023.1160577
    Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
  10. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al.
    Front Bioeng Biotechnol, 2022;10:874742.
    PMID: 35464722 DOI: 10.3389/fbioe.2022.874742
    Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
  11. Tachihana S, Nagao N, Katayama T, Hirahara M, Yusoff FM, Banerjee S, et al.
    Front Bioeng Biotechnol, 2020;8:602721.
    PMID: 33363132 DOI: 10.3389/fbioe.2020.602721
    Significantly high eicosapentaenoic acid (EPA) and fucoxanthin contents with high production rate were achieved in semi continuous culture of marine diatom. Effects of dilution rate on the production of biomass and high value biocompounds such as EPA and fucoxanthin were evaluated in semi-continuous cultures of Chaetoceros gracilis under high light condition. Cellular dry weight increased at lower dilution rate and higher light intensity conditions, and cell size strongly affected EPA and fucoxanthin contents. The smaller microalgae cells showed significantly higher (p < 0.05) value of 17.1 mg g-dw-1 fucoxanthin and 41.5% EPA content per total fatty acid compared to those observed in the larger cells. Chaetoceros gracilis can accumulate relatively higher EPA and fucoxanthin than those reported previously. In addition, maintenance of small cell size by supplying sufficient nutrients and light energy can be the key for the increase production of valuable biocompounds in C. gracilis.
  12. Tahri S, Maarof M, Masri S, Che Man R, Masmoudi H, Fauzi MB
    Front Bioeng Biotechnol, 2023;11:1200618.
    PMID: 37425369 DOI: 10.3389/fbioe.2023.1200618
    Introduction: Plenty of biomaterials have been studied for their application in skin tissue engineering. Currently, gelatin-hydrogel is used to support three-dimensional (3D) skin in vitro models. However, mimicking the human body conditions and properties remains a challenge and gelatin-hydrogels have low mechanical properties and undergo rapid degradation rendering them not suitable for 3D in vitro cell culture. Nevertheless, changing the concentration of hydrogels could overcome this issue. Thus, we aim to investigate the potential of gelatin hydrogel with different concentrations crosslinked with genipin to promote human epidermal keratinocytes and human dermal fibroblasts culture to develop a 3D-in vitro skin model replacing animal models. Methods: Briefly, the composite gelatin hydrogels were fabricated using different concentrations as follows 3%, 5%, 8%, and 10% crosslinked with 0.1% genipin or non-crosslinked. Both physical and chemical properties were evaluated. Results and discussion: The crosslinked scaffolds showed better properties, including porosity and hydrophilicity, and genipin was found to enhance the physical properties. Furthermore, no alteration was prominent in both formulations of CL_GEL 5% and CL_GEL8% after genipin modification. The biocompatibility assays showed that all groups promoted cell attachment, cell viability, and cell migration except for the CL_GEL10% group. The CL_GEL5% and CL_GEL8% groups were selected to develop a bi-layer 3D-in vitro skin model. The immunohistochemistry (IHC) and hematoxylin and eosin staining (H&E) were performed on day 7, 14, and 21 to evaluate the reepithelization of the skin constructs. However, despite satisfactory biocompatibility properties, neither of the selected formulations, CL_GEL 5% and CL_GEL 8%, proved adequate for creating a bi-layer 3D in-vitro skin model. While this study provides valuable insights into the potential of gelatin hydrogels, further research is needed to address the challenges associated with their use in developing 3D skin models for testing and biomedical applications.
  13. Surya Teja SP, Damodharan N, Tamilanban T, Subramaniyan V, Chitra V, Chinni SV, et al.
    Front Bioeng Biotechnol, 2023;11:1222693.
    PMID: 37545888 DOI: 10.3389/fbioe.2023.1222693
    The aim of this study was to investigate the influence of excipients on retaining the particle size of methotrexate (MTX) loaded chitosan nanocarriers (CsNP) during lyophilization, which relates to the ability to enlarge the particle size and target specific areas. The nanocarriers were prepared using the ionic gelation technique with tripolyphosphate as a crosslinker. Three lyophilized formulations were used: nanosuspension without Lyoprotectant (NF), with mannitol (NFM), and with sucrose (NFS). The lyophilized powder intended for injection (PI) was examined to assess changes in particle size, product integrity, and comparative biodistribution studies to evaluate targeting ability. After lyophilization, NFS was excluded from in-vivo studies due to the product melt-back phenomenon. The particle size of the NF lyophile significantly increased from 176 nm to 261 nm. In contrast, NFM restricted the nanocarrier size to 194 nm and exhibited excellent cake properties. FTIR, XRD, and SEM analysis revealed the transformation of mannitol into a stable β, δ polymorphic form. Biodistribution studies showed that the nanocarriers significantly increased MTX accumulation in tumor tissue (NF = 2.04 ± 0.27; NFM = 2.73 ± 0.19) compared to the marketed PI (1.45 ± 0.25 μg), but this effect was highly dependent on the particle size. Incorporating mannitol yielded positive results in restricting particle size and favoring successful tumor targeting. This study demonstrates the potential of chitosan nanocarriers as promising candidates for targeted tumor drug delivery and cancer treatment.
  14. Ramli NM, Verreth JAJ, Yusoff FM, Nurulhuda K, Nagao N, Verdegem MCJ
    PMID: 33015002 DOI: 10.3389/fbioe.2020.01004
    This review investigates the performance and the feasibility of the integration of an algal reactor in recirculating aquaculture systems (RAS). The number of studies related to this topic is limited, despite the apparent benefit of algae that can assimilate part of the inorganic waste in RAS. We identified two major challenges related to algal integration in RAS: first, the practical feasibility for improving nitrogen removal performance by algae in RAS; second, the economic feasibility of integrating an algal reactor in RAS. The main factors that determine high algal nitrogen removal rates are light and hydraulic retention time (HRT). Besides these factors, nitrogen-loading rates and RAS configuration could be important to ensure algal performance in nitrogen removal. Since nitrogen removal rate by algae is determined by HRT, this will affect the size (area or volume) of the algal reactor due to the time required for nutrient uptake by algae and large surface area needed to capture enough light. Constraints related to design, space, light capture, and reactor management could incur additional cost for aquaculture production. However, the increased purification of RAS wastewater could reduce the cost of water discharge in places where this is subject to levees. We believe that an improved understanding of how to manage the algal reactor and technological advancement of culturing algae, such as improved algal reactor design and low-cost artificial light, will increase the practical and economic feasibility of algal integration in RAS, thus improving the potential of mass cultivation of algae in RAS.
  15. Yu L, Jiang H, Mei Q, Mohamad NI, Fernandez J, Gu Y
    Front Bioeng Biotechnol, 2023;11:1229574.
    PMID: 37614628 DOI: 10.3389/fbioe.2023.1229574
    Introduction: Playing badminton has been reported with extensive health benefits, while main injuries were documented in the lower extremity. This study was aimed to investigate and predict the knee- and ankle-joint loadings of athletes who play badminton, with "gold standard" facilities. The axial impact acceleration from wearables would be used to predict joint moments and contact forces during sub-maximal and maximal lunge footwork. Methods: A total of 25 badminton athletes participated in this study, following a previously established protocol of motion capture and musculoskeletal modelling techniques with the integration of a wearable inertial magnetic unit (IMU). We developed a principal component analysis (PCA) statistical model to extract features in the loading parameters and a multivariate partial least square regression (PLSR) machine learning model to correlate easily collected variables, such as the stance time, approaching velocity, and peak accelerations, with knee and ankle loading parameters (moments and contact forces). Results: The key variances of joint loadings were observed from statistical principal component analysis modelling. The promising accuracy of the partial least square regression model using input parameters was observed with a prediction accuracy of 94.52%, while further sensitivity analysis found a single variable from the ankle inertial magnetic unit that could predict an acceptable range (93%) of patterns and magnitudes of the knee and ankle loadings. Conclusion: The attachment of this single inertial magnetic unit sensor could be used to record and predict loading accumulation and distribution, and placement would exhibit less influence on the motions of the lower extremity. The intelligent prediction of loading patterns and accumulation could be integrated to design training and competition schemes in badminton or other court sports in a scientific manner, thus preventing fatigue, reducing loading-accumulation-related injury, and maximizing athletic performance.
  16. Kalidasan V, Theva Das K
    Front Bioeng Biotechnol, 2021;9:649203.
    PMID: 33777918 DOI: 10.3389/fbioe.2021.649203
    Gene editing platforms have revolutionized the field of genetics with a direct impact on the public health system. Although there are apparent benefits, it is often accompanied by public debates over its uncertainties and risks. In the Malaysian context, modern biotechnology has raised questions about how to best govern gene editing in regulations, biosafety, and biosecurity. Even though standards and guidelines on stem cell and cell-based therapies have been developed, there are no appropriate legal frameworks available for gene editing yet. Nevertheless, biosafety regulations were established to balance promoting biotechnology and protecting against their potential environmental and human health risks. There is also a need to address the potential of genetically modified organisms (GMOs) as bioweapons. Numerous frameworks from several international organizations may provide valuable input in formulating documents on gene editing. By establishing comprehensive guidelines, legal policies, and standards to tackle the challenges and risks associated with gene editing, Malaysia can successfully apply this modern technology in this country.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links