Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Abdullah NL, Mohd-Zin SW, Ahmad-Annuar A, Abdul-Aziz NM
    Front Cell Dev Biol, 2017;5:105.
    PMID: 29312933 DOI: 10.3389/fcell.2017.00105
    Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.
  2. Wang W, Zhang H, Sandai D, Zhao R, Bai J, Wang Y, et al.
    Front Cell Dev Biol, 2023;11:1324213.
    PMID: 38161333 DOI: 10.3389/fcell.2023.1324213
    ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
  3. Ramasamy TS, Yee YM, Khan IM
    Front Cell Dev Biol, 2021;9:625497.
    PMID: 34336816 DOI: 10.3389/fcell.2021.625497
    Osteoarthritis (OA) is a joint degenerative disease that is an exceedingly common problem associated with aging. Aging is the principal risk factor for OA, but damage-related physiopathology of articular chondrocytes probably drives the mechanisms of joint degeneration by a progressive decline in the homeostatic and regenerative capacity of cells. Cellular aging is the manifestation of a complex interplay of cellular and molecular pathways underpinned by transcriptional, translational, and epigenetic mechanisms and niche factors, and unraveling this complexity will improve our understanding of underlying molecular changes that affect the ability of the articular cartilage to maintain or regenerate itself. This insight is imperative for developing new cell and drug therapies for OA disease that will target the specific causes of age-related functional decline. This review explores the key age-related changes within articular chondrocytes and discusses the molecular mechanisms that are commonly perturbed as cartilage ages and degenerates. Current efforts and emerging potential therapies in treating OA that are being employed to halt or decelerate the aging processes are also discussed.
  4. Sakinah S, Priya SP, Mok PL, Munisvaradass R, Teh SW, Sun Z, et al.
    Front Cell Dev Biol, 2021;9:800659.
    PMID: 35178398 DOI: 10.3389/fcell.2021.800659
    [This corrects the article DOI: 10.3389/fcell.2021.637270.].
  5. Yusof KM, Groen K, Rosli R, Avery-Kiejda KA
    Front Cell Dev Biol, 2021;9:732415.
    PMID: 34733847 DOI: 10.3389/fcell.2021.732415
    Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.
  6. Jafri MA, Kalamegam G, Abbas M, Al-Kaff M, Ahmed F, Bakhashab S, et al.
    Front Cell Dev Biol, 2019;7:380.
    PMID: 32010693 DOI: 10.3389/fcell.2019.00380
    Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1β, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1β, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.
  7. Chan YH, Harith HH, Israf DA, Tham CL
    Front Cell Dev Biol, 2019;7:280.
    PMID: 31970155 DOI: 10.3389/fcell.2019.00280
    Endothelial cells lining the inner vascular wall form a monolayer that contributes to the selective permeability of endothelial barrier. This selective permeability is mainly regulated by an endothelium-specific adherens junctional protein, known as vascular endothelial-cadherin (VE-cadherin). In endothelial cells, the adherens junction comprises of VE-cadherin and its associated adhesion molecules such as p120, α-catenin, and β-catenin, in which α-catenin links cytoplasmic tails of VE-cadherin to actin cytoskeleton through β-catenin. Proinflammatory stimuli such as lipopolysaccharide (LPS) are capable of attenuating vascular integrity through the disruption of VE-cadherin adhesion in endothelial cells. To date, numerous studies demonstrated the disruption of adherens junction as a result of phosphorylation-mediated VE-cadherin disruption. However, the outcomes from these studies were inconsistent and non-conclusive as different cell fractions were used to examine the effect of LPS on the disruption of VE-cadherin. By using Western Blot, some studies utilized total protein lysate and reported decreased protein expression while some studies reported unchanged expression. Other studies which used membrane and cytosolic fractions of protein extract demonstrated decreased and increased VE-cadherin expression, respectively. Despite the irregularities, the results of immunofluorescence staining are consistent with the formation of intercellular gap. Besides that, the overall underlying disruptive mechanisms of VE-cadherin remain largely unknown. Therefore, this mini review will focus on different experiment approaches in terms of cell fractions used in different human endothelial cell studies, and relate these differences to the results obtained in Western blot and immunofluorescence staining in order to give some insights into the overall differential regulatory mechanisms of LPS-mediated VE-cadherin disruption and address the discrepancy in VE-cadherin expression.
  8. Chien CS, Chien Y, Lin YY, Tsai PH, Chou SJ, Yarmishyn AA, et al.
    Front Cell Dev Biol, 2021;9:634190.
    PMID: 34422789 DOI: 10.3389/fcell.2021.634190
    Non-viral gene delivery holds promises for treating inherited diseases. However, the limited cloning capacity of plasmids may hinder the co-delivery of distinct genes to the transfected cells. Previously, the conjugation of maleimide-functionalized polyurethane grafted with small molecular weight polyethylenimine (PU-PEI600-Mal) using 1,6-hexanedithiol (HDT) could promote the co-delivery and extensive co-expression of two different plasmids in target cells. Herein, we designed HDT-conjugated PU-PEI600-Mal for the simultaneous delivery of CRISPR/Cas9 components to achieve efficient gene correction in the induced pluripotent stem cell (iPSC)-derived model of Fabry cardiomyopathy (FC) harboring GLA IVS4 + 919 G > A mutation. This FC in vitro model recapitulated several clinical FC features, including cardiomyocyte hypertrophy and lysosomal globotriaosylceramide (Gb3) deposition. As evidenced by the expression of two reporter genes, GFP and mCherry, the addition of HDT conjugated two distinct PU-PEI600-Mal/DNA complexes and promoted the co-delivery of sgRNA/Cas9 and homology-directed repair DNA template into target cells to achieve an effective gene correction of IVS4 + 919 G > A mutation. PU-PEI600-Mal/DNA with or without HDT-mediated conjugation consistently showed neither the cytotoxicity nor an adverse effect on cardiac induction of transfected FC-iPSCs. After the gene correction and cardiac induction, disease features, including cardiomyocyte hypertrophy, the mis-regulated gene expressions, and Gb3 deposition, were remarkably rescued in the FC-iPSC-differentiated cardiomyocytes. Collectively, HDT-conjugated PU-PEI600-Mal-mediated dual DNA transfection system can be an ideal approach to improve the concurrent transfection of non-viral-based gene editing system in inherited diseases with specific mutations.
  9. Kusamoto A, Harada M, Minemura A, Matsumoto A, Oka K, Takahashi M, et al.
    Front Cell Dev Biol, 2024;12:1365624.
    PMID: 38590777 DOI: 10.3389/fcell.2024.1365624
    The gut microbiome is implicated in the pathogenesis of polycystic ovary syndrome (PCOS), and prenatal androgen exposure is involved in the development of PCOS in later life. Our previous study of a mouse model of PCOS induced by prenatal dihydrotestosterone (DHT) exposure showed that the reproductive phenotype of PCOS appears from puberty, followed by the appearance of the metabolic phenotype after young adulthood, while changes in the gut microbiota was already apparent before puberty. To determine whether the prenatal or postnatal nurturing environment primarily contributes to these changes that characterize prenatally androgenized (PNA) offspring, we used a cross-fostering model to evaluate the effects of changes in the postnatal early-life environment of PNA offspring on the development of PCOS-like phenotypes and alterations in the gut microbiota in later life. Female PNA offspring fostered by normal dams (exposed to an abnormal prenatal environment only, fostered PNA) exhibited less marked PCOS-like phenotypes than PNA offspring, especially with respect to the metabolic phenotype. The gut microbiota of the fostered PNA offspring was similar to that of controls before adolescence, but differences between the fostered PNA and control groups became apparent after young adulthood. In conclusion, both prenatal androgen exposure and the postnatal early-life environment created by the DHT injection of mothers contribute to the development of PCOS-like phenotypes and the alterations in the gut microbiota that characterize PNA offspring. Thus, both the pre- and postnatal environments represent targets for the prevention of PCOS and the associated alteration in the gut microbiota in later life.
  10. Abu N, Othman N, Ab Razak NS, Bakarurraini NAAR, Nasir SN, Soh JEC, et al.
    Front Cell Dev Biol, 2020;8:564648.
    PMID: 33324632 DOI: 10.3389/fcell.2020.564648
    Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. It has been shown that the body-mass index (BMI) of the patients could influence the tumor microenvironment, treatment response, and overall survival rates. Nevertheless, the mechanism on how BMI affects the tumorigenesis process, particularly the tumor microenvironment is still elusive. Herein, we postulate that extracellular vesicles (EVs) from CRC patients and non-CRC volunteers with different BMI could affect immune cells differently, in CD8 T cells particularly. We isolated the EVs from the archived serum of CRC patients with high and low BMI, as well as healthy controls with similar BMI status. The EVs were further characterized via electron microscopy, western blot and dynamic light scattering. Then, functional analysis was performed on CD8 T cells including apoptosis, cell proliferation, gene expression profiling and cytokine release upon co-incubation with the different EVs. Our results suggest that CRC-derived EVs were able to regulate the CD8 T cells. In some assays, low BMI EVs were functionally different than high BMI EVs. This study highlights the possible difference in the regulatory mechanism of cancer patients-derived EVs, especially on CD8 T cells.
  11. Lee JW, Ong EBB
    Front Cell Dev Biol, 2020;8:619126.
    PMID: 33511130 DOI: 10.3389/fcell.2020.619126
    Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
  12. Teh SW, Koh AE, Tong JB, Wu X, Samrot AV, Rampal S, et al.
    Front Cell Dev Biol, 2021;9:634131.
    PMID: 34490233 DOI: 10.3389/fcell.2021.634131
    Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone.
  13. Low JJW, Sulaiman SA, Johdi NA, Abu N
    Front Cell Dev Biol, 2022;10:996805.
    PMID: 36467419 DOI: 10.3389/fcell.2022.996805
    Glioblastoma (GB) is a type of brain cancer that can be considered aggressive. Glioblastoma treatment has significant challenges due to the immune privilege site of the brain and the presentation of an immunosuppressive tumor microenvironment. Extracellular vesicles (EVs) are cell-secreted nanosized vesicles that engage in intercellular communication via delivery of cargo that may cause downstream effects such as tumor progression and recipient cell modulation. Although the roles of extracellular vesicles in cancer progression are well documented, their immunomodulatory effects are less defined. Herein, we focus on glioblastoma and explain the immunomodulatory effects of extracellular vesicles secreted by both tumor and immune cells in detail. The tumor to immune cells, immune cells to the tumor, and intra-immune cells extracellular vesicles crosstalks are involved in various immunomodulatory effects. This includes the promotion of immunosuppressive phenotypes, apoptosis, and inactivation of immune cell subtypes, which affects the central nervous system and peripheral immune system response, aiding in its survival and progression in the brain.
  14. Kalamegam G, Alfakeeh SM, Bahmaid AO, AlHuwait EA, Gari MA, Abbas MM, et al.
    Front Cell Dev Biol, 2020;8:646.
    PMID: 32793594 DOI: 10.3389/fcell.2020.00646
    Chronic inflammation is a common underlying factor in osteoarthritis (OA) and most age-related degenerative diseases. As conventional therapies help only in partial alleviation of symptoms in OA, stem cell-based therapies and herbal supplements are being widely explored. Thymoquinone (TQ), an active ingredient of Nigella sativa is reported to have immunomodulatory, anti-inflammatory and antioxidant properties. We evaluated the effects of TQ on bone marrow MSCs (BM-MSCs) derived from OA patients and its interrelated pathways in inflammation and age-related degenerative diseases using Ingenuity Pathway Analysis (IPA) as well as possible molecular targets using SwissTargetPrediction. BM-MSCs were derived from OA patients and their stemness properties were characterized by studying the MSCs related CD surface marker expression and differentiation into adipocytes, osteoblasts, and chondrocytes. Treatment with TQ (100 nM-5 μM) demonstrated cell death, especially at higher concentrations. MTT assay demonstrated a significant concentration-dependent decrease in cell viability which ranged from 20.04% to 69.76% with higher doses (300 nM, 1 μM, and 5 μM), especially at 48h and 72h. Additional cell viability testing with CellTiter-Blue also demonstrated a significant concentration-dependent decrease in cell viability which ranged from 27.80 to 73.67% with higher doses (300 nM, 1 μM, 3 μM, and 5 μM). Gene expression analysis following treatment of BM-MSCs with TQ (1 and 3 μM) for 48h showed upregulation of the anti-inflammatory genes IL-4 and IL-10. In contrast, the pro-inflammatory genes namely IFN-γ, TNF-α, COX-2, IL-6, IL-8, IL-16, and IL-12A although were upregulated, compared to the lower concentration of TQ (1 μM) they were all decreased at 3 μM. The pro-apoptotic BAX gene was downregulated while the SURVIVIN gene was upregulated. IPA of the molecular interaction of TQ in inflammation and age-related degenerative diseases identified canonical pathways directly related to synaptogenesis, neuroinflammation, TGF-β, and interleukin signaling. Further screening led to the identification of 36 molecules that are involved in apoptosis, cell cycle regulation, cytokines, chemokines, and growth factors. SwissTargetPrediction of TQ identified potential molecular targets with high probability. TQ exerted anti-inflammatory effects and therefore can be a useful adjuvant along with conventional therapies against inflammation in OA and other age-related degenerative diseases.
  15. Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F
    Front Cell Dev Biol, 2022;10:1005926.
    PMID: 36407112 DOI: 10.3389/fcell.2022.1005926
    Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links