Displaying publications 1 - 20 of 306 in total

Abstract:
Sort:
  1. Vitamia C, Iftinan GN, Latarissa IR, Wilar G, Cahyanto A, Mohammed AFA, et al.
    Front Pharmacol, 2024;15:1353503.
    PMID: 38434698 DOI: 10.3389/fphar.2024.1353503
    Background: Recurrent Aphthous Stomatitis (RAS) is a common ulcerative disease of the oral mucosa which is characterized by pain, and recurrent lesions in the oral cavity. This condition is quite painful, causing difficulty in eating, speaking and swallowing. Topical medications have been used for this condition, but the obstacle in using topical medications is the difficulty of achieving drug effects due to saliva wash out. This problem can be overcome by film hydrogel formulation which can protect the ulcer and reduce the pain to some extent. α-mangostin is a xanthone isolated from the rind of the mangosteen fruit. One of the activities of α-mangostin is anti-inflammatory effects, which operate through the characteristic mechanism of inhibiting the inflammatory response. This protocol study aims to investigate the efficacy of an α-mangostin hydrogel film with a chitosan alginate base for recurrent aphthous stomatitis (RAS) in comparison with a placebo over a period of 7 days. Study design: This is a two-arm, double blinding, randomized controlled trial enrolling patients with RAS. The efficacy test of α-mangostin Hydrogel Film will be tested against the placebo. Patients with RAS will be allocated randomly into the two arms and the hydrogel film will be administered for 7 days. The diameter of ulcer and visual analog scale (VAS) score will be used as the primary efficacy endpoint. The outcome measure will be compared between the two arms at the baseline, day 3, day 5, and at the end of 7 days. Discussion: The purpose of this clinical research is to provide scientific evidence on the efficacy of α-mangostin hydrogel film with a chitosan alginate basis in treating recurrent aphthous stomatitis. The trial is expected to improve our capacity to scientifically confirm the anti-inflammatory effectiveness of α-mangostin compounds in a final formulation that is ready to use. Trial registration: NCT06039774 (14 September 2023).
  2. Hon KW, Abu N, Ab Mutalib NS, Jamal R
    Front Pharmacol, 2018;9:846.
    PMID: 30127741 DOI: 10.3389/fphar.2018.00846
    Chemotherapy is one of the options for cancer treatment. FOLFOX is one of the widely used chemotherapeutic regimens used to treat primarily colorectal cancer and other cancers as well. However, the emergence of chemo-resistance clones during cancer treatment has become a critical challenge in the clinical setting. It is crucial to identify the potential biomarkers and therapeutics targets which could lead to an improvement in the success rate of the proposed therapies. Since non-coding RNAs have been known to be important players in the cellular system, the interest in their functional roles has intensified. Non-coding RNAs (ncRNAs) as regulators at the post-transcriptional level could be very promising to provide insights in overcoming chemo-resistance to FOLFOX. Hence, this mini review attempts to summarize the potential of ncRNAs correlating with chemo-sensitivity/resistance to FOLFOX.
  3. Sulaiman SA, Ab Mutalib NS, Jamal R
    Front Pharmacol, 2016;7:271.
    PMID: 27601996 DOI: 10.3389/fphar.2016.00271
    Among the gynecological malignancies, ovarian cancer is the most fatal due to its high mortality rate. Most of the identified cases are epithelial ovarian cancer (EOC) with five distinct subtypes: high-grade serous carcinoma, low-grade serous carcinoma, mucinous carcinoma, endometrioid carcinoma, and clear-cell carcinoma. Lack of an early diagnostic approach, high incidence of tumor relapse and the heterogenous characteristics between each EOC subtypes contribute to the difficulties in developing precise intervention and therapy for the patients. MicroRNAs (miRNAs) are single-stranded RNAs that have been shown to function as tumor suppressors or oncomiRs. The miR-200 family, especially miR-200c, has been shown to be implicated in the metastasis and invasion of ovarian carcinoma due to its functional regulation of epithelial-to-mesenchymal transition (EMT). This mini review is aimed to summarize the recent findings of the miR-200c functional role as well as its validated targets in the metastasis cascade of ovarian cancer, with a focus on EMT regulation. The potential of this miRNA in early diagnosis and its dual expression status are also discussed.
  4. Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, et al.
    Front Pharmacol, 2020;11:92.
    PMID: 32194397 DOI: 10.3389/fphar.2020.00092
    Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
  5. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
  6. Subramanian S, Duraipandian C, Alsayari A, Ramachawolran G, Wong LS, Sekar M, et al.
    Front Pharmacol, 2023;14:1096905.
    PMID: 36817128 DOI: 10.3389/fphar.2023.1096905
    Background: Dodonaea viscosa Jacq. (D. viscosa) belongs to the family of Sapindaceae, commonly known as "Sinatha," and is used as a traditional medicine for treating wounds due to its high flavonoids content. However, to date there is no experimental evidence on its flavonoid-rich fraction of D. viscosa formulation as an agent for healing wounds. Objective: The present study aimed to evaluate the wound healing effect of ethyl acetate fraction of D. viscosa leaves on dermal wounds. Methods: The ethyl acetate fraction was produced from a water-ethanol extract of D. viscosa leaves and was quantitatively evaluated using the HPLC technique. The in-vivo wound healing ability of the ethyl acetate fraction of D. viscosa ointment (DVFO, 2.5%w/w and 5%w/w) was investigated in Sprague-Dawley rats utilizing an incision and excision paradigm with povidone-iodine ointment (5% w/w) as a control. The percentage of wound closure, hydroxyproline and hexosamine concentrations, tensile strength and epithelialization duration were measured. Subsequently, histopathology analysis of skin samples as well as western blots were performed for collagen type 3 (COL3A1), basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Results: The ethyl acetate fraction of D. viscosa revealed flavonoids with high concentrations of quercetin (6.46% w/w) and kaempferol (0.132% w/w). Compared to the control group, the DVFO (2.5% and 5.0% w/w) significantly accelerated wound healing in both models, as demonstrated by quicker wound contraction, epithelialization, elevated hydroxyproline levels and increased tensile strength. Histopathological investigations also revealed that DVFO treatment improved wound healing by re-epithelialization, collagen formation and vascularization of damaged skin samples. Western blot analysis further demonstrated an up-regulation of COL3A, vascular endothelial growth factor and bFGF protein in wound granulation tissue of the DVFO-treated group (p < 0.01). Conclusion: It is concluded that flavonoid-rich D. viscosa ethyl acetate fraction promotes wound healing by up-regulating the expressions of COL3A, VEGF and bFGF protein in wound granulation tissue. However, extensive clinical and pre-clinical research on the flavonoid-rich fraction of D. viscosa is needed to determine its significant impact in the healing of human wounds.
  7. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Front Pharmacol, 2017;8:444.
    PMID: 28725195 DOI: 10.3389/fphar.2017.00444
    A constellation of medical conditions inclusive of central obesity, hyperglycemia, hypertension, and dyslipidemia is known as metabolic syndrome (MetS). The safest option in curtailing the progression of MetS is through maintaining a healthy lifestyle, which by itself, is a long-term commitment entailing much determination. A combination of pharmacological and non-pharmacological approach, as well as lifestyle modification is a more holistic alternative in the management of MetS. Vitamin E has been revealed to possess anti-oxidative, anti-inflammatory, anti-obesity, anti-hyperglycemic, anti-hypertensive and anti-hypercholesterolemic properties. The pathways regulated by vitamin E are critical in the development of MetS and its components. Therefore, we postulate that vitamin E may exert some health benefits on MetS patients. This review intends to summarize the evidence in animal and human studies on the effects of vitamin E and articulate the contrasting potential of tocopherol (TF) and tocotrienol (T3) in preventing the medical conditions associated with MetS. As a conclusion, this review suggests that vitamin E may be a promising agent for attenuating MetS.
  8. Naqvi AA, AlShayban DM, Ghori SA, Mahmoud MA, Haseeb A, Faidah HS, et al.
    Front Pharmacol, 2019;10:633.
    PMID: 31231222 DOI: 10.3389/fphar.2019.00633
    Objective: The aim was to validate the General Medication Adherence Scale (GMAS) (English version) in Saudi patients with chronic disease. Methods: A month-long study was conducted in the out-patient department of tertiary care hospitals in three cities of Saudi Arabia that collected data from a randomized sample of Saudi patients with chronic disease. The study aimed to achieve an item-to-subject ratio greater than 1:10. Factor analyses were conducted and fit indices calculated. Convergent, discriminant, known group, and concurrent validities were analysed. Internal consistency was determined using test-retest reliability using Cronbach's alpha (α), McDonald's coefficient omega (ω
    t
    ), and Pearson's correlation coefficient (ρ). Sensitivity analysis was conducted. Data were analysed through Statistical Package for Social Sciences (SPSS) version 23. The study was ethically approved (i.e., IRB-129-26/6/1439). Results: The survey gathered responses from 171 patients with a response rate of 85.5%. An item-to-subject ratio of 1:15 was achieved. Factor analysis revealed a three-factor structure with acceptable fit indices (i.e., normed fit index (NFI) = 0.93, Tucker-Lewis index (TLI) = 0.99, and comparative fit index (CFI) = 0.99), i.e., greater than 0.9. The value of root mean square error of approximation (RMSEA) was 0.01, i.e., less than 0.08. The tool established construct validity, i.e., convergent and discriminant validities. Known group and concurrent validities were also established. An α value of 0.74 and ω
    t
    value of 0.92 were reported. Test-retest reliability ρ = 0.82, p < 0.001. The tool had high sensitivity (>75%) and specificity (>80%). Conclusion: The GMAS-English was successfully validated in Saudi patients with chronic disease.
  9. Naqvi AA, Hassali MA, Rizvi M, Zehra A, Nisa ZU, Islam MA, et al.
    Front Pharmacol, 2020;11:1039.
    PMID: 32765264 DOI: 10.3389/fphar.2020.01039
    Objective: The aim was to validate the Urdu version of General Medication Adherence Scale (GMAS) in patients with rheumatoid arthritis disease.

    Methods: A 2-month (March-April 2019) cross-sectional study was conducted in randomly selected out-patients with rheumatoid arthritis. The sample size was calculated using item-subject ratio of 1:20. The scale was evaluated for factorial, concrete, concurrent, and known group validities. Concrete validity was established by correlating scores of EQ-5D quality of life scale and GMAS adherence score. Concurrent validity was established by correlating the GMAS adherence score with pill count. Analyses for sensitivity were also conducted. Cut-off value was determined through receiver operator curve (ROC), and test-retest method was used to analyze internal consistency and reliability. Data were analyzed through IBM SPSS, IBM AMOS, and MedCalc software. The Urdu version of EQ-5D quality of life questionnaire was used with permission from developers (#ID20884). The study was approved by an ethics committee (#NOV:15).

    Results: A total of 351 responses were analyzed. The response rate was 98%. Reliability was in acceptable range, i.e., Cronbach α = 0.797. Factorial validity was established by calculation of satisfactory fit indices. Correlation coefficients for concrete and concurrent validities were ρ = 0.687, p < 0.01 and ρ = 0.779, p < 0.01, respectively. Known group validity was established as significant association of adherence score with insurance and illness duration (p < 0.05) that were reported. Sensitivity of the scale was 94%. Most patients had high adherence (N = 159, 45.3%).

    Conclusion: The Urdu version of GMAS demonstrated adequate internal consistency and was validated. These results indicate that it is an appropriate tool to measure medication adherence in Pakistani patients with rheumatoid arthritis.

  10. Ismail NE, Jimam NS, Dapar MLP, Ahmad S
    Front Pharmacol, 2019;10:1521.
    PMID: 31998125 DOI: 10.3389/fphar.2019.01521
    Background: This study assessed the validity and reliability of healthcare workers' knowledge, attitudes, and practices instrument for uncomplicated malaria (HKAPIUM) for evaluation of healthcare workers' knowledge, attitudes, and practices (KAP) on uncomplicated malaria management in primary healthcare (PHC) facilities in Plateau state, Nigeria. Methods: Relevant variables from literature, malaria treatment guidelines for Nigeria, and World Health Organization (WHO) were used to generate and present the items for the draft HKAPIUM scale, which was first screened by six experts before administered to 121 respondents who filled and returned immediately. The data were sorted and analyzed using Rasch measurement model (Bond & Fox software®). Results: The outcome of the initial screening showed high items content validity indices (I-CVI) (0.83-1.00) and high scale-CVI (S-CVI) {universal agreement (UA) within the experts (S-CVI/UA) (0.67-0.89) and the average CVI [S-CVI/Ave (0.94-0.98)]} for relevance, clarity, simplicity, and comprehensiveness. The Rasch analysis outputs showed good items' reliability for the three factors (KAP) > 0.9 with high separation index values of > 2.0; however person reliability were poor (< 0.6) which were confirmed by their low separation values. Goodness of fit statistics indicated nine items not fitting the model based on the suggested fit index values of 0.6 to 1.5, and ± 2 for mean square (MNSQ) and standardized Z-score (Zstds) respectively, and 0.3 to 0.7 for "point-measure correlation coefficients" (PTMEA Corr). Deletion of misfit items resulted in the items and persons' reliabilities falling above the minimum accepted limit of 0.6, with their separation values were all in the range of 1 and 2 which were acceptable. Similarly, fit index values for MNSQ infit and outfit, and Zstd parameters items in the new scale were all within the acceptable range of 0.6 to 1.5, and ±2 respectively, in addition to the positive PTMEA Corr as further confirmation of the items' fitness to the model. Conclusion: The reduction of 27-items draft HKAPIUM scale to 18 items was successful with good reliability and fitness to the model.
  11. Haque M, Kumar S, Charan J, Bhatt R, Islam S, Dutta S, et al.
    Front Pharmacol, 2020;11:582154.
    PMID: 33628172 DOI: 10.3389/fphar.2020.582154
    Background: COVID-19 has already claimed a considerable number of lives worldwide. However, there are concerns with treatment recommendations given the extent of conflicting results with suggested treatments and misinformation, some of which has resulted in increased prices and shortages alongside increasing use and prices of personal protective equipment (PPE). This is a concern in countries such as India where there have been high patient co-payments and an appreciable number of families going into poverty when members become ill. However, balanced against pricing controls. Community pharmacists play a significant role in disease management in India, and this will remain. Consequently, there is a need to review prices and availability of pertinent medicines during the early stages of the COVID-19 pandemic in India to provide future direction. Objective: Assess current utilisation and price changes as well as shortages of pertinent medicines and equipment during the early stages of the pandemic. Our Approach: Multiple approach involving a review of treatments and ongoing activities across India to reduce the spread of the virus alongside questioning pharmacies in selected cities from early March to end May 2020. Our Activities: 111 pharmacies took part, giving a response rate of 80%. Encouragingly, no change in utilisation of antimalarial medicines in 45% of pharmacies despite endorsements and for antibiotics in 57.7% of pharmacies, helped by increasing need for a prescription for dispensing. In addition, increased purchasing of PPE (over 98%). No price increases were seen for antimalarials and antibiotics in 83.8 and 91.9% of pharmacies respectively although shortages were seen for antimalarials in 70.3% of pharmacies, lower for antibiotics (9.9% of pharmacies). However, price increases were typically seen for PPE (over 90% of stores) as well as for analgesics (over 50% of pharmacies). Shortages were also seen for PPE (88.3%). Conclusion: The pandemic has impacted on utilisation and prices of pertinent medicines and PPE in India but moderated by increased scrutiny. Key stakeholder groups can play a role with enhancing evidenced-based approaches and reducing inappropriate purchasing in the future.
  12. Attiq A, Afzal S
    Front Pharmacol, 2023;14:1255727.
    PMID: 37680708 DOI: 10.3389/fphar.2023.1255727
    Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
  13. Subramanian A, Tamilanban T, Alsayari A, Ramachawolran G, Wong LS, Sekar M, et al.
    Front Pharmacol, 2022;13:1094351.
    PMID: 36618946 DOI: 10.3389/fphar.2022.1094351
    The primary and considerable weakening event affecting elderly individuals is age-dependent cognitive decline and dementia. Alzheimer's disease (AD) is the chief cause of progressive dementia, and it is characterized by irreparable loss of cognitive abilities, forming senile plaques having Amyloid Beta (Aβ) aggregates and neurofibrillary tangles with considerable amounts of tau in affected hippocampus and cortex regions of human brains. AD affects millions of people worldwide, and the count is showing an increasing trend. Therefore, it is crucial to understand the underlying mechanisms at molecular levels to generate novel insights into the pathogenesis of AD and other cognitive deficits. A growing body of evidence elicits the regulatory relationship between the mammalian target of rapamycin (mTOR) signaling pathway and AD. In addition, the role of autophagy, a systematic degradation, and recycling of cellular components like accumulated proteins and damaged organelles in AD, is also pivotal. The present review describes different mechanisms and signaling regulations highlighting the trilateral association of autophagy, the mTOR pathway, and AD with a description of inhibiting drugs/molecules of mTOR, a strategic target in AD. Downregulation of mTOR signaling triggers autophagy activation, degrading the misfolded proteins and preventing the further accumulation of misfolded proteins that inhibit the progression of AD. Other target mechanisms such as autophagosome maturation, and autophagy-lysosomal pathway, may initiate a faulty autophagy process resulting in senile plaques due to defective lysosomal acidification and alteration in lysosomal pH. Hence, the strong link between mTOR and autophagy can be explored further as a potential mechanism for AD therapy.
  14. Abubakar M, Ahmad N, Ghafoor A, Latif A, Ahmad I, Atif M, et al.
    Front Pharmacol, 2021;12:640555.
    PMID: 33867989 DOI: 10.3389/fphar.2021.640555
    Background: The current study is conducted with the aim to the fill the gap of information regarding treatment outcomes and variables associated with unsuccessful outcome among XDR-TB patients from Pakistan. Methods: A total of 404 culture confirmed XDR-TB patients who received treatment between 1st May 2010 and June 30, 2017 at 27 treatment centers all over Pakistan were retrospectively followed until their treatment outcomes were reported. A p-value <0.05 reflected a statistical significant association. Results: The patients had a mean age 32.9 ± 14.1 years. The overall treatment success rate was 40.6% (95% confidence interval [CI]:35.80-45.60%). A total of 155 (38.4%) patients were declared cured, 9 (2.2%) completed treatment, 149 (36.9%) died, 60 (14.9%) failed treatment and 31 (7.7%) were lost to follow up (LTFU). The results of the multivariate binary logistic regression analysis revealed that the patients' age of >60 years (OR = 4.69, 95%CI:1.57-15.57) and receiving high dose isoniazid (OR = 2.36, 95%CI:1.14-4.85) had statistically significant positive association with death, whereas baseline body weight >40 kg (OR = 0.43, 95%CI:0.25-0.73) and sputum culture conversion in the initial two months of treatment (OR = 0.33, 95%CI:0.19-0.58) had statistically significant negative association with death. Moreover, male gender had statistically significant positive association (OR = 1.92, 95%CI:1.04-3.54) with LTFU. Conclusion: The treatment success rate (40.6%) of XDR-TB patients in Pakistan was poor. Providing special attention and enhanced clinical management to patients with identified risk factors for death and LTFU in the current cohort may improve the treatment outcomes.
  15. Arbain D, Sinaga LMR, Taher M, Susanti D, Zakaria ZA, Khotib J
    Front Pharmacol, 2022;13:849704.
    PMID: 35685633 DOI: 10.3389/fphar.2022.849704
    The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.
  16. Alam S, Sarker MMR, Afrin S, Richi FT, Zhao C, Zhou JR, et al.
    Front Pharmacol, 2021;12:671498.
    PMID: 34122096 DOI: 10.3389/fphar.2021.671498
    SARS-CoV-2 is the latest worldwide pandemic declared by the World Health Organization and there is no established anti-COVID-19 drug to combat this notorious situation except some recently approved vaccines. By affecting the global public health sector, this viral infection has created a disastrous situation associated with high morbidity and mortality rates along with remarkable cases of hospitalization because of its tendency to be high infective. These challenges forced researchers and leading pharmaceutical companies to find and develop cures for this novel strain of coronavirus. Besides, plants have a proven history of being notable wellsprings of potential drugs, including antiviral, antibacterial, and anticancer therapies. As a continuation of this approach, plant-based preparations and bioactive metabolites along with a notable number of traditional medicines, bioactive phytochemicals, traditional Chinese medicines, nutraceuticals, Ayurvedic preparations, and other plant-based products are being explored as possible therapeutics against COVID-19. Moreover, the unavailability of effective medicines against COVID-19 has driven researchers and members of the pharmaceutical, herbal, and related industries to conduct extensive investigations of plant-based products, especially those that have already shown antiviral properties. Even the recent invention of several vaccines has not eliminated doubts about safety and efficacy. As a consequence, many limited, unregulated clinical trials involving conventional mono- and poly-herbal therapies are being conducted in various areas of the world. Of the many clinical trials to establish such agents as credentialed sources of anti-COVID-19 medications, only a few have reached the landmark of completion. In this review, we have highlighted and focused on plant-based anti-COVID-19 clinical trials found in several scientific and authenticated databases. The aim is to allow researchers and innovators to identify promising and prospective anti-COVID-19 agents in clinical trials (either completed or recruiting) to establish them as novel therapies to address this unwanted pandemic.
  17. Anwar F, Saleem U, Rehman AU, Ahmad B, Froeyen M, Mirza MU, et al.
    Front Pharmacol, 2021;12:607026.
    PMID: 34040515 DOI: 10.3389/fphar.2021.607026
    The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD
    50
    . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.
  18. Ahmad W, Jantan I, Bukhari SN
    Front Pharmacol, 2016;7:59.
    PMID: 27047378 DOI: 10.3389/fphar.2016.00059
    Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae), found in the rainforests or mixed deciduous forests in Asia and Africa, is used in traditional medicines to treat numerous health conditions. This review summarizes the up-to-date reports about the ethnobotany, phytochemistry, pharmacological activities, toxicology, and clinical trials of the plant. It also provides critical assessment about the present knowledge of the plant which could contribute toward improving its prospect as a source of lead molecules for drug discovery. The plant has been used traditionally in the treatment of jaundice, rheumatism, urinary disorders, fever, malaria, diabetes, internal inflammation, fracture, scabies, hypertension, reducing thirst, increasing appetite, cooling down the body temperature, and maintaining good health. Phytochemical analyses of T. crispa revealed the presence of alkaloids, flavonoids, and flavone glycosides, triterpenes, diterpenes and diterpene glycosides, cis clerodane-type furanoditerpenoids, lactones, sterols, lignans, and nucleosides. Studies showed that the crude extracts and isolated compounds of T. crispa possessed a broad range of pharmacological activities such as anti-inflammatory, antioxidant, immunomodulatory, cytotoxic, antimalarial, cardioprotective, and anti-diabetic activities. Most pharmacological studies were based on crude extracts of the plant and the bioactive compounds responsible for the bioactivities have not been well identified. Further investigations are required to transform the experience-based claims on the use of T. crispa in traditional medicine practices into evidence-based information. The plant extract used in pharmacological and biological studies should be qualitatively and quantitatively analyzed based on its biomarkers. There should be detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more elaborate toxicity study to ensure safety of the plant for human use. More clinical trials are encouraged to be carried out if there are sufficient preclinical and safety data.
  19. Muronga M, Quispe C, Tshikhudo PP, Msagati TAM, Mudau FN, Martorell M, et al.
    Front Pharmacol, 2021;12:625546.
    PMID: 34054516 DOI: 10.3389/fphar.2021.625546
    Momordica species (Family Cucurbitaceae) are cultivated throughout the world for their edible fruits, leaves, shoots and seeds. Among the species of the genus Momordica, there are three selected species that are used as vegetable, and for medicinal purposes, Momordica charantia L (Bitter melon), Momordica foetida Schumach (Bitter cucumber) and Momordica balsamina L (African pumpkin). The fruits and leaves of these Momordica species are rich in primary and secondary metabolites such as proteins, fibers, minerals (calcium, iron, magnesium, zinc), β-carotene, foliate, ascorbic acid, among others. The extracts from Momordica species are used for the treatment of a variety of diseases and ailments in traditional medicine. Momordica species extracts are reputed to possess anti-diabetic, anti-microbial, anthelmintic bioactivity, abortifacient, anti-bacterial, anti-viral, and play chemo-preventive functions. In this review we summarize the biochemical, nutritional, and medicinal values of three Momordica species (M. charantia, M. foetida and M. balsamina) as promising and innovative sources of natural bioactive compounds for future pharmaceutical usage.
  20. Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB
    Front Pharmacol, 2022;13:847702.
    PMID: 35903322 DOI: 10.3389/fphar.2022.847702
    Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links