Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Villabona-Arenas CJ, Zanotto PM
    Infect Genet Evol, 2011 Jul;11(5):878-85.
    PMID: 21335103 DOI: 10.1016/j.meegid.2011.02.007
    Dengue virus type 4 (DENV-4) circulates in tropical and subtropical countries from Asia and the Americas. Despite the importance of dengue virus distribution, little is known about the worldwide viral spread. Following a Bayesian phylogenetic approach we inferred the evolutionary history of 310 isolates sampled from 37 countries during the time period 1956-2008 and the spreading dynamics for genotypes I and II. The region (tropical rainforest biome) comprised by Malaysia-Thailand was the most likely ancestral area from which the serotype has originated and spread. Interestingly, cross-correlation analysis on demographic time series with the Asian sequences showed a statistically significant negative correlation that could be suggestive of competition among genotypes within the same serotype.
  2. Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, et al.
    Infect Genet Evol, 2020 11;85:104583.
    PMID: 33035643 DOI: 10.1016/j.meegid.2020.104583
    The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
  3. Paquette AM, Harahap A, Laosombat V, Patnode JM, Satyagraha A, Sudoyo H, et al.
    Infect Genet Evol, 2015 Aug;34:153-9.
    PMID: 26047685 DOI: 10.1016/j.meegid.2015.06.002
    Southeast Asian Ovalocytosis (SAO) is a common red blood cell disorder that is maintained as a balanced polymorphism in human populations. In individuals heterozygous for the SAO-causing mutation there are minimal detrimental effects and well-documented protection from severe malaria caused by Plasmodium vivax and Plasmodium falciparum; however, the SAO-causing mutation is fully lethal in utero when homozygous. The present-day high frequency of SAO in Island Southeast Asia indicates the trait is maintained by strong heterozygote advantage. Our study elucidates the evolutionary origin of SAO by characterizing DNA sequence variation in a 9.5 kilobase region surrounding the causal mutation in the SLC4A1 gene. We find substantial haplotype diversity among SAO chromosomes and estimate the age of the trait to be approximately 10,005 years (95% CI: 4930-23,200 years). This date is far older than any other human malaria-resistance trait examined previously in Southeast Asia, and considerably pre-dates the widespread adoption of agriculture associated with the spread of speakers of Austronesian languages some 4000 years ago. Using a genealogy-based method we find no evidence of historical positive selection acting on SAO (s=0.0, 95% CI: 0.0-0.03), in sharp contrast to the strong present-day selection coefficient (e.g., 0.09) estimated from the frequency of this recessively lethal trait. This discrepancy may be due to a recent increase in malaria-driven selection pressure following the spread of agriculture, with SAO targeted as a standing variant by positive selection in malarial populations.
  4. Wong ML, Ahmed MA, Sulaiman WYW, Manin BO, Leong CS, Quan FS, et al.
    Infect Genet Evol, 2019 09;73:26-32.
    PMID: 30999059 DOI: 10.1016/j.meegid.2019.04.010
    We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.
  5. Kundave VR, Ram H, Shahzad M, Garg R, Banerjee PS, Nehra AK, et al.
    Infect Genet Evol, 2019 11;75:103962.
    PMID: 31302242 DOI: 10.1016/j.meegid.2019.103962
    Genetic characterization of Theileria species infecting bovines in India was attempted targeting the 18S ribosomal RNA region of the parasite. Blood samples of bovines (n = 452), suspected for haemoprotozoan infections, from 9 different states of the country were microscopically examined for Theileria species infection. Four Theileria spp. positive blood samples from each state were randomly utilized for PCR amplification of the 18S rRNA gene (approx. 1529 bp) followed by cloning and sequencing. The sequence data analysis of all the 36 isolates revealed that 33 isolates had high sequence similarity with published sequences of T. annulata, whereas 3 isolates (MF287917, MF287924 and MF287928) showed close similarity with published sequences of T. orientalis. Sequence homology within the isolates ranged between 95.8 and 100% and variation in the length of targeted region was also noticed in different isolates (1527-1538 nt). Phylogenetic tree created for T. annulata sequences revealed that a total of 24 Indian isolates formed a major clade and grouped together with isolates originating from countries like China, Spain, Turkey and USA. Remaining 09 isolates clustered in a separate group and were closely related to the TA5 isolate of T. annulata (a new genotype) originating from India and also with the isolates from East Asian countries like Japan and Malaysia. All the three T. orientalis isolates had minimal intraspecific variation (99-100% homology) amongst themselves. Further, in the phylogenetic analysis T. orientalis Indian isolates were found to cluster away from other 14 isolates of T. buffeli/sergenti/orientalis originating from different countries (Australia, China, Indonesia and Spain). However, these 3 isolates clustered together with the T. buffeli Indian isolate (EF126184). Present study confirmed the circulation of different genotypes of T. annulata in India, along with T. orientalis isolates.
  6. Teh CS, Chua KH, Thong KL
    Infect Genet Evol, 2011 Jul;11(5):1121-8.
    PMID: 21511055 DOI: 10.1016/j.meegid.2011.04.005
    This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae.
  7. Ngoi ST, Yap KP, Thong KL
    Infect Genet Evol, 2018 08;62:109-121.
    PMID: 29684710 DOI: 10.1016/j.meegid.2018.04.027
    Salmonella enterica serovar Typhimurium (S. Typhimurium) and the monophasic variant Salmonella I 4,[5],12:i:- are two clinically-important non-typhoidal Salmonella serovars worldwide. However, the genomic information of these two organisms, especially the monophasic variant, is still lacking in Malaysia. The objective of the study was to compare the genomic features of a monophasic variant and two endemic S. Typhimurium strains isolated from humans. All three strains were subjected to whole genome sequencing followed by comparative genomic and phylogenetic analyses. Extensive genomic deletion in the fljAB operon (from STM2757 to iroB) is responsible for the monophasic phenotype of STM032/04. The two S. Typhimurium genomes (STM001/70 and STM057/05) were essentially identical, despite being isolated 35 years apart. All three strains were of sequence type ST19. Both S. Typhimurium genomes shared unique prophage regions not identified in the monophasic STM032/04 genome. Core genome phylogenetic analyses showed that the monophasic STM032/04 was closely-related to the S. Typhimurium LT2, forming a distinctive clade separated from the two endemic S. Typhimurium strains in Malaysia. The presence of serovar Typhimurium-specific mdh gene, conserved Gifsy and Fels-1 prophages, and the close genomic resemblance with S. Typhimurium LT2 suggested that the monophasic STM032/04 was originated from an LT2-like S. Typhimurium ancestor in Malaysia, following an evolutionary path different from the S. Typhimurium strains. In conclusion, the monophasic Salmonella I 4,[5],12:i:- and the S. Typhimurium strains isolated in Malaysia descended from different phylogenetic lineages. The high genomic resemblance between the two S. Typhimurium strains isolated for at least 35 years apart indicated their successful evolutionary lineage. The identification of multiple virulence and antimicrobial resistance determinants in the Salmonella I 4,[5],12:i:- and S. Typhimurium genomes explained the pathogenic nature of the organisms.
  8. Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL
    Infect Genet Evol, 2020 09;83:104347.
    PMID: 32360538 DOI: 10.1016/j.meegid.2020.104347
    Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp disease of economic importance which causes mass mortality of cultivated penaeid shrimps in Southeast Asian countries, Mexico and South America. This disease was originally caused by Vibrio parahaemolyticus (VPAHPND) which is reported to harbour a transferable plasmid carrying the virulent PirAB-like toxin genes (pirABvp). However, little is known about the pathogenicity of VPAHPND. To extend our understanding, comparative genomic analyses was performed in this study to identify the genetic differences and to understand the phylogenetic relationship of VPAHPND strains. Seven Vibrio parahaemolyticus strains (five VPAHPND strains and two non-VPAHPND strains) were sequenced and 31 draft genomes of V. parahaemolyticus were retrieved from NCBI database and incorporated into the genomic comparison to elucidate their genomic diversity. The study showed that the genome sizes of the VPAHPND strains were approximately 5 Mbp. Ten sequence types (STs) were identified among the VPAHPND strains using in silico-Multilocus Sequence Typing analysis (MLST) and ST 970 was the predominant ST. Phylogenetic analysis based on MLST and single nucleotide polymorphisms (SNP) showed that the VPAHPND strains were genetically diverse. Based on the comparative genomic analysis, several functional proteins were identified from diiferent categories associated with virulence-related proteins, secretory proteins, conserved domain proteins, transporter proteins, and phage proteins. The CRISPR analysis showed that VPAHPND strains contained less number of CRISPRs elements than non-VPAHPND strains while six prophages regions were identified in the genomes, suggested the lack of CRISPR might promote prophage insertion. The genomic information in this study provide improved understanding of the virulence of these VPAHPND strains.
  9. Lim SY, Yap KP, Teh CS, Jabar KA, Thong KL
    Infect Genet Evol, 2017 04;49:55-65.
    PMID: 28039075 DOI: 10.1016/j.meegid.2016.12.029
    Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains.
  10. Ng TS, Desa MNM, Sandai D, Chong PP, Than LTL
    Infect Genet Evol, 2016 06;40:331-338.
    PMID: 26358577 DOI: 10.1016/j.meegid.2015.09.004
    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment.
  11. Nguyen TH, Wang D, Rahman SU, Bai H, Yao X, Chen D, et al.
    Infect Genet Evol, 2021 06;90:104750.
    PMID: 33548490 DOI: 10.1016/j.meegid.2021.104750
    Rice tungro bacilliform virus (RTBV) belongs to genus Tungrovirus within the family Caulimoviridae harbors circular double-stranded DNA (dsDNA). Rice tungro disease (RTD) caused by RTBV, responsible for severe rice yield losses in South and Southeast Asia. Here, we performed a systematic evolutionary and codon usage bias (CUB) analysis of RTBV genome sequences. We analysed different bioinformatics techniques to calculate the nucleotide compositions, the relative synonymous codon usage (RSCU), and other indices. The results indicated slightly or low codon usage bias in RTBV isolates. Mutation and natural selection pressures have equally contributed to this low codon usage bias. Additionally, multiple factors such as host, geographical distribution also affect codon usage patterns in RTBV genomes. RSCU analysis revealed that RTBV shows mutation bias and prefers A and U ended codons to code amino acids. Codon usage patterns of RTBV were also found to be influenced by its host. This indicates that RTBV have evolved codon usage patterns that are specific to its host. The findings from this study are expected to increase our understanding of factors leading to viral evolution and fitness with respect to hosts and the environment.
  12. Neoh HM, Tan XE, Sapri HF, Tan TL
    Infect Genet Evol, 2019 10;74:103935.
    PMID: 31233781 DOI: 10.1016/j.meegid.2019.103935
    Pulsed-field gel electrophoresis (PFGE) is considered the "gold standard" for bacteria typing. The method involves enzyme restriction of bacteria DNA, separation of the restricted DNA bands using a pulsed-field electrophoresis chamber, followed by clonal assignment of bacteria based on PFGE banding patterns. Various PFGE protocols have been developed for typing different bacteria, leading it to be one of the most widely used methods for phylogenetic studies, food safety surveillance, infection control and outbreak investigations. On the other hand, as PFGE is lengthy and labourious, several PCR-based typing methods can be used as alternatives for research purposes. Recently, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and whole genome sequencing (WGS) have also been proposed for bacteria typing. In fact, as WGS provides more information, such as antimicrobial resistance and virulence of the tested bacteria in comparison to PFGE, more and more laboratories are currently transitioning from PFGE to WGS for bacteria typing. Nevertheless, PFGE will remain an affordable and relevant technique for small laboratories and hospitals in years to come.
  13. Huey CS, Mahdy MA, Al-Mekhlafi HM, Nasr NA, Lim YA, Mahmud R, et al.
    Infect Genet Evol, 2013 Jul;17:269-76.
    PMID: 23624189 DOI: 10.1016/j.meegid.2013.04.013
    Giardia duodenalis is considered the most common intestinal parasite in humans worldwide. In Malaysia, many studies have been conducted on the epidemiology of giardiasis. However, there is a scarcity of information on the genetic diversity and the dynamics of transmission of G. duodenalis. The present study was conducted to identify G. duodenalis assemblages and sub-assemblages based on multilocus analysis of the glutamate dehydrogenase (gdh), beta-giardin (bg) and triose phosphate isomerase (tpi) genes. Faecal specimens were collected from 484 Orang Asli children with a mean age of 7 years and examined using light microscopy. Specimens positive for Giardia were subjected to PCR analysis of the three genes and subsequent sequencing in both directions. Sequences were edited and analysed by phylogenetic analysis. G. duodenalis was detected in 17% (84 of 484) of the examined specimens. Among them, 71 were successfully sequenced using at least one locus. Genotyping results showed that 30 (42%) of the isolates belonged to assemblage A, 32 (45%) belonged to assemblage B, while discordant genotype results were observed in 9 specimens. Mixed infections were detected in 43 specimens using a tpi-based assemblage specific protocol. At the sub-assemblages level, isolates belonged to assemblage A were AII. High nucleotide variation found in isolates of assemblage B made subtyping difficult to achieve. The finding of assemblage B and the anthroponotic genotype AII implicates human-to-human transmission as the most possible mode of transmission among Malaysian aborigines. The high polymorphism found in isolates of assemblage B warrants a more defining tool to discriminate assemblage B at the sub-assemblage level.
  14. Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al.
    Infect Genet Evol, 2016 06;40:243-252.
    PMID: 26980604 DOI: 10.1016/j.meegid.2016.03.009
    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes.
  15. Davidson RM, Hasan NA, de Moura VC, Duarte RS, Jackson M, Strong M
    Infect Genet Evol, 2013 Dec;20:292-7.
    PMID: 24055961 DOI: 10.1016/j.meegid.2013.09.012
    Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents.
  16. Niek WK, Teh CSJ, Idris N, Sit PS, Lee YQ, Thong KL, et al.
    Infect Genet Evol, 2020 11;85:104567.
    PMID: 32980576 DOI: 10.1016/j.meegid.2020.104567
    Methicillin-resistant Staphylococcus aureus (MRSA) is a prominent pathogen causing invasive infections such as bacteraemia. The continued excessive use of antibiotics to treat MRSA infections has resulted in the evolution of antimicrobial resistant of S. aureus. This study aims to perform a comparative evaluation of changing trends in molecular epidemiology of MRSA and clinical characteristics of patients. This study shows that ST22-MRSA-IV has gradually replaced ST239-MRSA-III as the predominant MRSA clone in the tertiary teaching hospital studied. Independent predictors of mortality among patients included devices in situ at the time of infection, pre-exposure to macrolides, catheter-related bloodstream infection and mono-microbial infection. Hence, our study affirmed community-associated MRSA, which was previously identified from individuals without any exposure to healthcare settings, has now emerged in healthcare settings, causing healthcare-associated MRSA infections.
  17. Mohammed MA, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, et al.
    Infect Genet Evol, 2011 Jul;11(5):855-62.
    PMID: 21352956 DOI: 10.1016/j.meegid.2011.01.020
    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection.
  18. Kojom Foko LP, Kouemo Motse FD, Kamgain Mawabo L, Pande V, Singh V
    Infect Genet Evol, 2021 07;91:104797.
    PMID: 33676011 DOI: 10.1016/j.meegid.2021.104797
    The performances of a commonly used Plasmodium falciparum-detecting rapid diagnostic test (RDT) were determined in symptomatic individuals living in Cameroon. Discrepancies between RDT and light microscopy (LM) results were further investigated, with a focus on non-falciparum malaria (NFM) which are still largely understudied in sub-Saharan Africa (sSA) countries. In the present study, a total of 355 individuals aged 1-65 years were enrolled in the study. Their signs/symptoms and sociodemographic characteristics were documented. The RDT reliability was evaluated using LM as gold standard method. Polymerase chain reaction (PCR) of Plasmodium 18S gene was performed for samples with discordant results between LM and RDT (i.e., RDT-/LM+, and RDT+/LM-). The PCR amplicons of NFM species were sequenced and BLASTed. The prevalence of malaria infection by LM was 95.7% (95% CI: 93.1-97.4%). The sensitivity and specificity of RDT for P. falciparum detection was 94.0% and 66.7%, respectively. By PCR assay, P. ovale curtisi (PoC) was found in 5 of the 30 discordant samples, and on sequence analysis these isolates were found to be phylogenetically closer to sequences reported from China-Myanmar border and Malaysia. This is the first report on molecular characterization of P. ovale subspecies in Cameroon. The study also outlines the good diagnostic performances of the RDT for detection of P. falciparum. Though, the presence of PoC indicated the importance of having RDTs targeting the NFM species in malaria diagnosis and treatment, which is presently limited in the country.
  19. Chong PP, Abdul Hadi SR, Lee YL, Phan CL, Tan BC, Ng KP, et al.
    Infect Genet Evol, 2007 Jul;7(4):449-56.
    PMID: 17324639
    Recurrent vulvovaginal candidiasis affects women worldwide and the resistance to azole drugs may be an important factor. The extent of strain-to-strain variation within a species and its relationship to the ability of the organism to colonize the vulvovaginal mucosa is not well established. The aims of this study were to compare: (i) the genotypes of Candida strains in sequential infections in patients with recurrent vaginitis, (ii) the genotypes of strains in patients with only one episode of infection in a period of 1 year and (iii) determine the in vitro antifungal susceptibilities of strains that cause recurrent vaginitis. Fifty-one cultured specimens from six distinct Candida species were genotyped via random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) method using the ERIC1 and ERIC2 primers (ERIC, enterobacterial repetitive intergenic consensus). Statistical analyses allowed three different scenarios to be discerned for recurrent cases: (i) strain maintenance without genetic variation, (ii) strain maintenance with minor genetic variation and (iii) outright strain replacement. The genetic relatedness between strains from patients with recurrent vaginitis and patients with single episode of vaginitis were demonstrated by the dendogramme and the mean pairwise similarity coefficient S(AB) for the intergroup comparison was 0.223. However, intragroup genetic relatedness was slightly higher than intergroup comparison, with mean S(AB) of 0.261 and 0.331 for Groups I and II, respectively. A high proportion of Group I isolates (87.5%) causing recurrent infections were resistant to ketoconazole, whereas 41.7% of these isolates were cross-resistant to both clotrimazole and ketoconazole as shown by the in vitro antifungal susceptibility test, especially for C. glabrata isolates. Pregnancy status of patients displayed a highly significant association with C. albicans species whereas non-albicans species had a markedly higher prevalence in non-pregnant patients (p<0.001). These results may have a profound impact on the management of vaginal candidiasis, especially in recurrent cases.
  20. Lorusso A, Teodori L, Leone A, Marcacci M, Mangone I, Orsini M, et al.
    Infect Genet Evol, 2015 Mar;30:55-58.
    PMID: 25497353 DOI: 10.1016/j.meegid.2014.12.006
    A novel member of the Pteropine Orthoreovirus species has been isolated and sequenced for the whole genome from flying foxes (Pteropus vampyrus) imported to Italy from Indonesia. The new isolate named Indonesia/2010 is genetically similar to Melaka virus which has been the first virus of this species to be shown to be responsible for human respiratory disease. Our findings highlight the importance of flying foxes as vectors of potentially zoonotic viruses and the biological hazard that lies in the import of animals from geographical areas that are ecologically diverse from Europe.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links