Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Zaki R, Bulgiba A, Nordin N, Azina Ismail N
    Iran J Basic Med Sci, 2013 Jun;16(6):803-7.
    PMID: 23997908
    Reliability measures precision or the extent to which test results can be replicated. This is the first ever systematic review to identify statistical methods used to measure reliability of equipment measuring continuous variables. This studyalso aims to highlight the inappropriate statistical method used in the reliability analysis and its implication in the medical practice.
  2. Latiff LA, Parhizkar S, Dollah MA, Hassan ST
    Iran J Basic Med Sci, 2014 Dec;17(12):980-5.
    PMID: 25859301
    The aim of this open label crossover study was to investigate the effects of Nigella sativa on reproductive health and metabolic profile of perimenopausal women in Rawang, Malaysia.
  3. Mosaheb MUFZ, Khan NA, Siddiqui R
    Iran J Basic Med Sci, 2018 Sep;21(9):873-877.
    PMID: 30524685 DOI: 10.22038/IJBMS.2018.30442.7339
    OBJECTIVES: To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials.

    MATERIALS AND METHODS: A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums.

    RESULTS: Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials.

    CONCLUSION: These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.

  4. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    Iran J Basic Med Sci, 2017 Aug;20(8):894-904.
    PMID: 29085581 DOI: 10.22038/IJBMS.2017.9111
    OBJECTIVES: The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells.

    MATERIALS AND METHODS: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro experiments including crystal violet staining, alkaline phosphatase (ALP) activity, and Van Gieson (VG) staining. Taken together, the efficiency of bone mineralization was examined by using alizarin red s (ARS) staining, Von Kossa staining, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The resulting data revealed that 5α-DHT exhibits promising potential particularly at a dose of 0.1 ng/ml, in promoting the growth of MC3T3-E1 cells compared to the control group (CN). Moreover, a significantly higher ALP activity was evident in the experimental group treated with 5α-DHT compared to the CN group at various time intervals. MC3T3-E1 cells treated with 5α-DHT also expressed a remarkably higher collagen deposition and mineralization (calcium and phosphate contents) compared to the CN group at various time intervals.

    CONCLUSION: Conclusively, we suggest that 5α-DHT exhibits outstanding potential of promoting proliferation and differentiation in osteoblasts which could be the in vitro basis for the efficacy of 5α-DHT in the treatment of androgen-deficient male osteoporosis.

  5. Kuan TLT, Amini F, Seghayat MS
    Iran J Basic Med Sci, 2017 Jul;20(7):729-738.
    PMID: 28852436 DOI: 10.22038/IJBMS.2017.9000
    Multiple sclerosis is a debilitating disease of the central nervous system. It affects people of all ages but is more prevalent among 20-40 year olds. Patients with MS can be presented with potentially any neurological symptom depending on the location of the lesion. A quarter of patients with MS suffer from bilateral lower limb spasticity among other symptoms. These devastating effects can be detrimental to the patient's quality of life. Hematopoietic stem cells (HSCs) have been used as a treatment for MS over the past 2 decades but their safety and efficacy has are undetermined. The objective of this study is to evaluate the feasibility and toxicity of autologous HSCs transplantation in MS. A literature search was done from 1997 to 2016 using different keywords. A total of 9 articles, which met the inclusion and exclusion criteria, were included in this review. The type of conditioning regimen and technique of stem cell mobilization are summarized and compared in this study. All studies reported high-dose immunosuppressive therapy with autologous HSCs transplantation being an effective treatment option for severe cases of multiple sclerosis. Fever, sepsis, and immunosuppression side effects were the most observed adverse effects that were reported in the selected studies. HSCs is a feasible treatment for patients with MS; nevertheless the safety is still a concern due to chemo toxicity.
  6. Azman KF, Zakaria R
    Iran J Basic Med Sci, 2019 Dec;22(12):1368-1377.
    PMID: 32133053 DOI: 10.22038/IJBMS.2019.14027
    This paper reviews the potential role of honey as a therapeutic antioxidant to reduce oxidative stress and improve cognitive ageing. All articles indexed to PubMed Central (PMC) were searched using the following key words: honey, antioxidant, memory and ageing. Honey is a natural insect-derived product with therapeutic, medicinal and nutritional values. Antioxidant properties of honey quench biologically-circulating reactive oxygen species (ROS) and counter oxidative stress while restoring the cellular antioxidant defense system. Antioxidant properties of honey may complement its nootropic effects to reduce cognitive ageing.
  7. Haron DE, Chik Z, Noordin MI, Mohamed Z
    Iran J Basic Med Sci, 2015 Dec;18(12):1167-75.
    PMID: 26877845
    Transdermal preparations for testosterone are becoming popular because of their unique advantages such as avoidance of first-pass effect, convenience, improved bioavailability, and reduction of systemic side effects. A novel testosterone transdermal delivery system (TDDS) was developed using a palm oil base called HAMIN™ (a commercial product) and tested using in vitro and in vivo skin permeability test methods.
  8. Aala F, Yusuf UK, Nulit R, Rezaie S
    Iran J Basic Med Sci, 2014 Mar;17(3):150-4.
    PMID: 24847416
    Trichophyton rubrum (T. rubrum) is one of the most common dermatophytes worldwide. This fungus invaded skin appendages of humans and animals. Recently, resistance to antifungal drugs as well as appearance of side effects due to indication of these kinds of antibiotics has been reported. Besides, using some plant extracts have been indicated in herbal medicine as an alternative treatment of these fungal infections. The aim of this study was to investigate the effects of Garlic (Allium sativum) and pure allicin on the growth of hypha in T. rubrum using Electron miscroscopy.
  9. Subermaniam K, Lew SY, Yow YY, Lim SH, Yu WS, Lim LW, et al.
    Iran J Basic Med Sci, 2023;26(6):669-679.
    PMID: 37275754 DOI: 10.22038/IJBMS.2023.67835.14842
    OBJECTIVES: Neuroinflammation and microglial activation are pathological features in central nervous system disorders. Excess levels of reactive oxygen species (ROS) and pro-inflammatory cytokines have been implicated in exacerbation of neuronal damage during chronic activation of microglial cells. Padina australis, a brown macroalga, has been demonstrated to have various pharmacological properties such as anti-neuroinflammatory activity. However, the underlying mechanism mediating the anti-neuroinflammatory potential of P. australis remains poorly understood. We explored the use of Malaysian P. australis in attenuating lipopolysaccharide (LPS)-stimulated neuroinflammation in BV2 microglial cells.

    MATERIALS AND METHODS: Fresh specimens of P. australis were freeze-dried and subjected to ethanol extraction. The ethanol extract (PAEE) was evaluated for its protective effects against 1 µg/ml LPS-stimulated neuroinflammation in BV2 microglial cells.

    RESULTS: LPS reduced the viability of BV2 microglia cells and increased the levels of nitric oxide (NO), prostaglandin E2 (PGE2), intracellular reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). However, the neuroinflammatory response was reversed by 0.5-2.0 mg/ml PAEE in a dose-dependent manner. Analysis of liquid chromatography-mass spectrometry (LC-MS) of PAEE subfractions revealed five compounds; methyl α-eleostearate, ethyl α-eleostearate, niacinamide, stearamide, and linoleic acid.

    CONCLUSION: The protective effects of PAEE against LPS-stimulated neuroinflammation in BV2 microglial cells were found to be mediated by the suppression of excess levels of intracellular ROS and pro-inflammatory mediators and cytokines, denoting the protective role of P. australis in combating continuous neuroinflammation. Our findings support the use of P. australis as a possible therapeutic for neuroinflammatory and neurodegenerative diseases.

  10. Subermaniam K, Teoh SL, Yow YY, Tang YQ, Lim LW, Wong KH
    Iran J Basic Med Sci, 2021 Aug;24(8):997-1013.
    PMID: 34804417 DOI: 10.22038/ijbms.2021.54800.12291
    Depression is a complex heterogeneous brain disorder characterized by a range of symptoms, resulting in psychomotor and cognitive disabilities and suicidal thoughts. Its prevalence has reached an alarming level affecting millions of people globally. Despite advances in current pharmacological treatments, the heterogenicity of clinical response and incidences of adverse effects have shifted research focus to identification of new natural substances with minimal or no adverse effects as therapeutic alternatives. Marine algae-derived extracts and their constituents are considered potential sources of secondary metabolites with diverse beneficial effects. Marine algae with enormous health benefits are emerging as a natural source for discovering new alternative antidepressants. Its medicinal properties exhibited shielding efficacy against neuroinflammation, oxidative stress, and mitochondrial dysfunction, which are indicated to underlie the pathogenesis of many neurological disorders. Marine algae have been found to ameliorate depressive-like symptoms and behaviors in preclinical and clinical studies by restoring monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis function, neuroplasticity, and continuous neurogenesis in the dentate gyrus of the hippocampus via modulating brain-derived neurotrophic factors and antineuroinflammatory activity. Although antidepressant effects of marine algae have not been validated in comparison with currently available synthetic antidepressants, they have been reported to have effects on the pathophysiology of depression, thus suggesting their potential as novel antidepressants. In this review, we analyzed the currently available research on the potential benefits of marine algae on depression, including their effects on the pathophysiology of depression, potential clinical relevance of their antidepressant effects in preclinical and clinical studies, and the underlying mechanisms of these effects.
  11. Lim JS, Chai YY, Ser WX, Haeren AV, Lim YH, Raja T, et al.
    Iran J Basic Med Sci, 2024;27(2):134-150.
    PMID: 38234674 DOI: 10.22038/IJBMS.2023.71672.15593
    Antibiotic resistance is fast spreading globally, leading to treatment failures and adverse clinical outcomes. This review focuses on the resistance mechanisms of the top five threatening pathogens identified by the World Health Organization's global priority pathogens list: carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin, vancomycin-resistant Staphylococcus aureus. Several novel drug candidates have shown promising results from in vitro and in vivo studies, as well as clinical trials. The novel drugs against carbapenem-resistant bacteria include LCB10-0200, apramycin, and eravacycline, while for Enterobacteriaceae, the drug candidates are LysSAP-26, DDS-04, SPR-206, nitroxoline, cefiderocol, and plazomicin. TNP-209, KBP-7072, and CRS3123 are agents against E. faecium, while Debio 1450, gepotidacin, delafloxacin, and dalbavancin are drugs against antibiotic-resistant S. aureus. In addition to these identified drug candidates, continued in vitro and in vivo studies are required to investigate small molecules with potential antibacterial effects screened by computational receptor docking. As drug discovery progresses, preclinical and clinical studies should also be extensively conducted on the currently available therapeutic agents to unravel their potential antibacterial effect and spectrum of activity, as well as safety and efficacy profiles.
  12. Adnan LH, Bakar NH, Mohamad N
    Iran J Basic Med Sci, 2014 Dec;17(12):926-8.
    PMID: 25859295
    Methadone is widely being used for opioid substitution therapy. However, the administration of methadone to opioid dependent individual is frequently accompanied by withdrawal syndrome and chemical dependency develops. Other than that, it is also difficult to retain patients in the treatment programme making their retention rates are decreasing over time. This article is written to higlights the potential use of prophetic medicines, Nigella sativa, as a supplement for opioid dependent receiving methadone. It focuses on the potential role of N. sativa and its major active compound, Thymoquinone (TQ) as a calcium channel blocking agent to reduce withdrawal syndrome and opioid dependency.
  13. Hui Yin Y, Ahmad N, Makmor-Bakry M
    Iran J Basic Med Sci, 2013 Nov;16(11):1119-32.
    PMID: 24494063
    Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models.
  14. Maleki MH, Sekawi Z, Soroush S, Azizi-Jalilian F, Asadollahi K, Mohammadi S, et al.
    Iran J Basic Med Sci, 2014 Jan;17(1):21-6.
    PMID: 24592303
    To date, the most important genes responsible for tetracycline resistance among Acinetobacter baumannii isolates have been identified as tet A and tet B. This study was carried out to determine the rate of resistance to tetracycline and related antibiotics, and mechanisms of resistance.
  15. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Iran J Basic Med Sci, 2020 Sep;23(9):1155-1163.
    PMID: 32963737 DOI: 10.22038/ijbms.2020.45296.10545
    Objectives: Since bisphenol A (BPA) induces bone loss and phytoestrogens enhance the osteoblastogenesis by binding to the non-classical and classical oestrogen receptors, respectively, the present study was aimed to observe the osteoprotective effect of phytoestrogens on BPA-induced osteoblasts in hFOB 1.19 cells.

    Materials and Methods: All groups of hFOB 1.19 cells were induced with 12.5 μg/ml of BPA except the control (Ctrl) group. Meanwhile, treated groups received phytoestrogens; Daidzein (Dz), Genistein (Gt), Equol (Eq) and 17β-oestradiol (Est) in different concentrations for 24 hr duration.

    Results: We found that the protein expression of non-classical oestrogen-related receptor (ERRG) was highly expressed in BPA group, whereas classical oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) were relatively increased with phytoestrogens treatment under BPA exposure. The dense actin cytoskeletal filaments were also observed. qRT-PCR showed up-regulation of mitogen-activated protein kinase 3 (MAPK3) and G protein-coupled receptor 30 (GPR30) expressions; significant down-regulation of ERRG and up-regulation of ERα and ERβ were observed in phytoestrogens-treated cells, which was supported by the increased expressions of oestrogen receptor 1 (ESR1) and oestrogen receptor 2 (ESR2).

    Conclusion: Phytoestrogens improved the deteriorative effect of BPA via down-regulation of ERRG in hFOB 1.19 cells. This study showed that the efficacy of consumption of phytoestrogens in rendering them as potential therapeutic strategy in combating the adverse bone effects of BPA.

  16. Nissanka MC, Weerasekera MM, Dilhari A, Dissanayaka R, Rathnayake S, Wijesinghe GK
    Iran J Basic Med Sci, 2023;26(9):979-986.
    PMID: 37605731 DOI: 10.22038/IJBMS.2023.67965.14877
    Hygrophila schulli which is known as "Neermulli'' in the vernacular is an herbaceous plant native to Sri Lanka. Ancient medicinal literature suggests the use of H. schulli whole plant or its parts for the treatment of different communicable and non-communicable diseases including diabetes mellitus and tuberculosis. Active constituents and secondary metabolites including alkaloids, tannins, steroids, proteins, flavonoids, and glycosides are identified to possess antimicrobial, antitumor, antioxidant, hepatoprotective, anthelmintic, nephroprotective, antidiabetic, anticataract, anti-inflammatory, anti-nociceptive, hematopoietic, diuretic, antiurolithiatic, antipyretic, neuroprotection, and anti-endotoxin activities. In this review, we reviewed clinical studies, patents, and analytical studies from the earliest found examples from 1886 to the end of 2021. We critically analyzed and attempt to summarize the information based on bioactivities and chemical composition of H. schulli plant extracts which will be of future use for researchers in this field.
  17. Hanafi NI, Mohamed M, Sirajudeen KNMS, Hafizoh Saidan N, Siew Hua G, Pahirulzaman KAK, et al.
    Iran J Basic Med Sci, 2023;26(11):1360-1369.
    PMID: 37885997 DOI: 10.22038/IJBMS.2023.71521.15547
    OBJECTIVES: This study aimed to investigate the protective effects of fenugreek on CoCl2-induced hypoxia in neonatal rat cardiomyocytes.

    MATERIALS AND METHODS: Primary cardiomyocytes were isolated from Sprague Dawley rats aged 0-2 days and incubated with various concentrations of fenugreek (10-320 µg/ml) and CoCl2-induced hypoxia for different durations (24, 48, and 72 hr). Cell viability, calcium signaling, beating rate, and gene expression were evaluated.

    RESULTS: Fenugreek treatments did not cause any toxicity in cardiomyocytes. At a concentration of 160 µg/ml for 24 hr, fenugreek protected the heart against CoCl2-induced hypoxia, as evidenced by reduced expression of caspases (-3, -6, -8, and -9) and other functional genes markers, such as HIF-1α, Bcl-2, IP3R, ERK5, and GLP-1r. Calcium signaling and beating rate were also improved in fenugreek-treated cardiomyocytes. In contrast, CoCl2 treatment resulted in up-regulation of the hypoxia gene HIF-1α and apoptotic caspases gene (-3, -9, -8, -12), and down-regulation of Bcl-2 activity.

    CONCLUSION: Fenugreek treatment at a concentration of 160 µg/ml was not toxic to neonatal rat cardiomyocytes and protected against CoCl2-induced hypoxia. Furthermore, fenugreek improved calcium signaling and beating rate and altered gene expression. Fenugreek may be a potential therapeutic agent for promoting cardioprotection against hypoxia-induced injuries.

  18. Zaipul Anuar NF, Mohd Desa MN, Hussaini J, Wong EH, Mariappan V, Vellasamy KM, et al.
    Iran J Basic Med Sci, 2024;27(2):214-222.
    PMID: 38234660 DOI: 10.22038/IJBMS.2023.72584.15791
    OBJECTIVES: Pneumococcal cell wall (PCW) is an inflammatory component in Streptococcus pneumoniae. The cell surface proteins and the toll-like receptors (TLR) signaling response were investigated in the human lung epithelial (A549) cells inoculated with PCW of different serotypes.

    MATERIALS AND METHODS: The presence of genes encoding these proteins was determined using polymerase chain reaction (PCR). The structure of the cell walls was analyzed by proton nuclear magnetic resonance (1H NMR). The A549 cell line was challenged with PCW extracts of different serotypes. RNA from the infected host cells was extracted and tested against a total of 84 genes associated with TLR signaling pathways (TLR 1-6 and 10) using RT2 Profiler PCR Array.

    RESULTS: Cell surface proteins; ply, lytA, nanA, nanB, and cbpD genes were present in all serotypes. The distribution and structure of surface protein genes suggest behavioral changes in the molecules, contributing to the resilience of the strains to antibiotic treatment.

    CONCLUSION: TLR2 showed the highest expression, while serotypes 1, 3, and 5 induced higher TNFα and IL-1α, suggesting to be more immunogenic than the other strains tested.

  19. Moshiri A, Tekyieh Maroof N, Mohammad Sharifi A
    Iran J Basic Med Sci, 2020 Nov;23(11):1426-1438.
    PMID: 33235700 DOI: 10.22038/ijbms.2020.46228.10707
    Objectives: We investigated the role of various biomaterials on cell viability and in healing of an experimentally induced femoral bone hole model in rats.

    Materials and Methods: Cell viability and cytotoxicity of gelatin (Gel; 50 µg/µl), chitosan (Chi; 20 µg/µl), hydroxyapatite (HA; 50 µg/µl), nanohydroxyapatite (nHA; 10 µg/µl), three-calcium phosphate (TCP; 50 µg/µl) and strontium carbonate (Sr; 10 µg/µl) were evaluated on hADSCs via MTT assay. In vivo femoral drill-bone hole model was produced in rats that were either left untreated or treated with autograft, Gel, Chi, HA, nHA, TCP and Sr, respectively. The animals were euthanized after 30 days. Their bone holes were evaluated by gross-pathology, histopathology, SEM and radiography. Also, their dry matter, bone ash and mineral density were measured.

    Results: Both the Gel and Chi showed cytotoxicity, while nHA had no role on cytotoxicity and cell-viability. All the HA, TCP and Sr significantly improved cell viability when compared to controls (P<0.05). Both the Gel and Chi had no role on osteoconduction and osteoinduction. Compared to HA, nHA showed superior role in increasing new bone formation, mineral density and ash (P<0.05). In contrast to HA and nHA, both the TCP and Sr showed superior morphological, radiographical and biochemical properties on bone healing (P<0.05). TCP and Sr showed the most effective osteoconduction and osteoinduction, respectively. In the Sr group, the most mature type of osteons formed.

    Conclusion: Various biomaterials have different in vivo efficacy during bone regeneration. TCP was found to be the best material for osteoconduction and Sr for osteoinduction.

  20. Parhizkar S, Zulkifli SB, Dollah MA
    Iran J Basic Med Sci, 2014 May;17(5):384-90.
    PMID: 24967068
    OBJECTIVES: This study was designed to investigate the effect of Phaleria macrocarpa aqueous extract (PM) on spermatogenesis by observing the histological changes of testes in adult male rats.

    MATERIALS AND METHODS: PM was prepared by boiling the dried slices of P. macrocarpa fruits followed by filtering, centrifugation and freeze-drying to obtain the powder form. Eighteen Sprague Dawley adult male rats were divided into three groups (six in each group), designated as treatment (240 mg/kg PM), negative control (distilled water) and positive control (4mg/kg testosterone) and administered via intragastric gavage for seven weeks. In the sixth week of supplementation period, each male rat was introduced to five female rats. Afterward, all rats were sacrificed and the testes were removed for histological studies.

    RESULTS: PM significantly increased the number of cell and the thickness of seminiferous tubules of male rats (P<0.05). However, there was no significant effect on the volume and size of testes. The mean of spermatogonia cells numbers of PM groups differed significantly from the negative and positive groups (P<0.05).

    CONCLUSION: PM showed potential value as an attractive alternative for improving sexual strength by increasing the number of spermatogonia cell and the thickness of the seminiferous tubules. Perhaps, PM could be suggested to be one of the herbal remedies that can improve men fertility. The results may have some clinical implication in the management of infertility.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links