Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Zainul Kamal S, Ngoc Minh Tran Q, Koyama M, Mimoto H, Asada C, Nakamura Y, et al.
    J Biosci Bioeng, 2022 Jan 31.
    PMID: 35115228 DOI: 10.1016/j.jbiosc.2022.01.004
    Hydrothermal treatment (HTT) as a pretreatment method for compost raw material has multiple benefits such as enhanced solubility of organic material, improved bioaugmentation, and reduced biohazard by killing harmful microorganisms. In this study, we pretreated food waste via HTT at 180 °C for 30 min to investigate its effect on food waste composting. HTT generated 8.98 mg/g-dry solid (g-ds) of 5-hydroxymethylfurfural and 4.32 mg/g-ds furfural. These furan compounds were completely decomposed in the early stage of composting, subsequently the organic matter in the food waste started to be degraded. The HTT-pretreated experiment demonstrated less organic matter degradation during composting as well as lower compost phytotoxicity compared to the non-HTT-pretreated experiment, where the conversion of carbon was 25.2% and the germination index value was 55%. HTT probably denatured part of the organic matter and making it more difficult to decompose, thereby preventing the rapid release of high concentrations of phytotoxic compounds such as organic acids and ammonium ions during composting. High-throughput microbial community analysis revealed that only Firmicutes appeared in the HTT-pretreated experiment, however, other bacterial groups also appeared in the non-HTT-pretreated experiment. This was possibly influenced by furan compounds and the changes of easily degradable organic matter to hardly degradable. Bacillus and Lysinibacillus were dominant in both composting experiments during vigorous organic matter degradation, suggesting that these bacterial groups were the main contributors to food waste composting. This study suggests that HTT is advantageous for the pretreatment of easily degradable food waste, as compost with less phytotoxicity was produced.
  2. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Biosci Bioeng, 2012 Jan;113(1):26-9.
    PMID: 22024533 DOI: 10.1016/j.jbiosc.2011.09.007
    The C-terminal domain of Nipah virus (NiV) nucleocapsid protein (NP₄₀₁₋₅₃₂) was inserted at the N-terminus and the immunodominant loop of hepatitis B core antigen (HBc). The stability of NP₄₀₁₋₅₃₂ increased tremendously when displayed on the HBc particles. These particles reacted specifically with the swine anti-NiV and the human anti-HBc antisera.
  3. Yang J, Lu J, Zhu Q, Tao Y, Zhu Q, Guo C, et al.
    J Biosci Bioeng, 2021 Aug;132(2):161-166.
    PMID: 33972168 DOI: 10.1016/j.jbiosc.2020.12.016
    As one of Lianyungang's most famous specialties, Acanthogobius hasta is delicious and nutritious fish, but is extremely susceptible to spoilage during transportation and storage. In this study, Lactobacillus plantarum MMB-07 was isolated from traditional fermented sour fish to reduce losses and improve the utilization and food value of A. hasta. L. plantarum MMB-07 had good ability of acid production and acid resistance. Moreover, it could also inhibit common pathogens in food or aquatic products to ensure the safety of fermented products. MMB-07 was used to ferment A. hasta and obtain fermented Suanyu rich in nutrition value and good flavor. The volatile base nitrogen was 18.44 mg/100 g and the fermented fish meat maintained second-grade freshness. Thiobarbituric acid assay was 0.90 mg/kg and fat in fish meat was oxidized to a low degree. The studies indicated that MMB-07 has a high application prospect in low salt fermented fish.
  4. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
  5. Wong YM, Wu TY, Ling TC, Show PL, Lee SY, Chang JS, et al.
    J Biosci Bioeng, 2018 May;125(5):590-598.
    PMID: 29352712 DOI: 10.1016/j.jbiosc.2017.12.012
    Three newly discovered H2 producing bacteria namely Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY originated from landfill leachate sludge have demonstrated highly efficient H2 production. The maximum H2 production attained from these isolates are in the descending order of strain C. perfringens strain JJC > C. bifermentans strain WYM > Clostridium sp. strain Ade.TY with yield of 4.68 ± 0.12, 3.29 ± 0.11, and 2.87 ± 0.10 mol H2/mol glucose, respectively. The result has broken the conventional theoretical yield of 4 mol H2/mol glucose. These isolates were thermodynamically favourable with Gibbs free energy between -33 and -35 kJ/mol (under process conditions: pH 6, 37 °C and 5 g/L glucose). All three isolates favour butyrate pathway for H2 production with the ratio of acetate and butyrate of 0.77, 0.65 and 0.80 for strain JJC, WYM and Ade.TY, respectively. This study reported provides a new insight on the potential of unique bacteria in H2 production.
  6. Voo WP, Ravindra P, Tey BT, Chan ES
    J Biosci Bioeng, 2011 Mar;111(3):294-9.
    PMID: 21216192 DOI: 10.1016/j.jbiosc.2010.11.010
    A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.
  7. Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH
    J Biosci Bioeng, 2023 Apr;135(4):259-265.
    PMID: 36803862 DOI: 10.1016/j.jbiosc.2023.01.010
    Saccharomyces cerevisiae has a long-standing history of biotechnological applications even before the dawn of modern biotechnology. The field is undergoing accelerated advancement with the recent systems and synthetic biology approaches. In this review, we highlight the recent findings in the field with a focus on omics studies of S. cerevisiae to investigate its stress tolerance in different industries. The latest advancements in S. cerevisiae systems and synthetic biology approaches for the development of genome-scale metabolic models (GEMs) and molecular tools such as multiplex Cas9, Cas12a, Cpf1, and Csy4 genome editing tools, modular expression cassette with optimal transcription factors, promoters, and terminator libraries as well as metabolic engineering. Omics data analysis is key to the identification of exploitable native genes/proteins/pathways in S. cerevisiae with the optimization of heterologous pathway implementation and fermentation conditions. Through systems and synthetic biology, various heterologous compound productions that require non-native biosynthetic pathways in a cell factory have been established via different strategies of metabolic engineering integrated with machine learning.
  8. Tey BT, Al-Rubeai M
    J Biosci Bioeng, 2005 Sep;100(3):303-10.
    PMID: 16243281
    Chemostat cultures of NS0 cell lines were carried out at dilution rates ranging from 0.8 d(-1) to 0.2 d(-1). Compared with the control, the viable cell density of the Bcl-2 cell line was approximately 10% higher at 0.8 d(-1) and increased to 55% when the dilution rate was reduced to 0.2 d(-1). As the dilution rate was reduced, the viability of the two cultures diverged reaching a difference of 43% at 0.2 d(-1). The specific growth rate of the control cells was the same as the dilution rate down to a value of 0.6 d(-1). By contrast, the specific growth rate of Bcl-2 cells was parallel to the dilution rate down to a value as low as 0.3 d(-1). For both NS0 cell lines, the G1 cell population decreased, while the S and G2/M cell populations increased as the dilution rate was reduced. The antibody titer of the control cells increased from 7 to 21 microg.ml(-1) as the dilution rate was reduced from 0.8 to 0.2 d(-1). With an initial increase from 2 to 15 microg.ml(-1) as the dilution rate was reduced from 0.8 to 0.4 d(-1), the antibody titer of the Bcl-2 cells remained constant as the dilution rate was further reduced to 0.2 d(-1). A good correlation between specific antibody production rate and the percentage of G2/M cells was observed.
  9. Tang PW, Choon YW, Mohamad MS, Deris S, Napis S
    J Biosci Bioeng, 2015 Mar;119(3):363-8.
    PMID: 25216804 DOI: 10.1016/j.jbiosc.2014.08.004
    Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.
  10. Tai YT, Foong CP, Najimudin N, Sudesh K
    J Biosci Bioeng, 2016 Apr;121(4):355-64.
    PMID: 26467694 DOI: 10.1016/j.jbiosc.2015.08.008
    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated.
  11. Soo EL, Salleh AB, Basri M, Zaliha Raja Abdul Rahman RN, Kamaruddin K
    J Biosci Bioeng, 2003;95(4):361-7.
    PMID: 16233420
    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.
  12. Saleena LAK, Teo MYM, How YH, In LLA, Pui LP
    J Biosci Bioeng, 2023 Jan;135(1):1-9.
    PMID: 36428209 DOI: 10.1016/j.jbiosc.2022.10.010
    Fermented foods are gaining popularity due to health-promoting properties with high levels of nutrients, phytochemicals, bioactive compounds, and probiotic microorganisms. Due to its unique fermentation process, Lactococcus lactis plays a key role in the food business, notably in the manufacturing of dairy products. The superior biological activities of L. lactis in these functional foods include anti-inflammatory and immunomodulatory capabilities. L. lactis boosted growth performance, controlled amino acid profiles, intestinal immunology, and microbiota. Besides that, the administration of L. lactis increased the rate of infection clearance. Innate and acquired immune responses would be upregulated in both local and systemic compartments, resulting in these consequences. L. lactis is often employed in the food sector and is currently being exploited as a delivery vehicle for biological research. These bacteria are being eyed as potential candidates for biotechnological applications. With this in mind, we reviewed the immunomodulatory effects of different L. lactis strains.
  13. Sakai K, Hassan MA, Vairappan CS, Shirai Y
    J Biosci Bioeng, 2022 Feb 09.
    PMID: 35151536 DOI: 10.1016/j.jbiosc.2022.01.001
    Palm oil is a representative and important biomass, not only as the most edible vegetable oil consumed worldwide, but also as a material for chemicals and biofuels. Despite the potential sustainability of the palm oil industry, it has conventionally emitted excess greenhouse gases, waste materials, and wastewater, brought land use change, thus affecting the natural environment. Therefore, the successful development of a sustainable palm oil industry is a touchstone for promoting the bioeconomy. Here, we first review the concept of the bioeconomy and the positive and negative aspects of the palm oil industry. Then, we consider solutions for introducing a green economy into the palm oil industry, such that it may coexist with biodiversity and environmental conservation toward the Sustainable Development Goals.
  14. Saika A, Watanabe Y, Sudesh K, Tsuge T
    J Biosci Bioeng, 2014 Jun;117(6):670-5.
    PMID: 24484910 DOI: 10.1016/j.jbiosc.2013.12.006
    An obligate anaerobic bacterium Clostridium difficile has a unique metabolic pathway to convert leucine to 4-methylvalerate, in which 4-methyl-2-pentenoyl-CoA (4M2PE-CoA) is an intermediate of this pathway. 4M2PE-CoA is also able to be converted to 3-hydroxy-4-methylvalerate (3H4MV), a branched side chain monomer unit, for synthesis of polyhydroxyalkanoate (PHA) copolymer. In this study, to synthesize 3H4MV-containing PHA copolymer from leucine, the leucine metabolism-related enzymes (LdhA and HadAIBC) derived from C. difficile and PHA biosynthesis enzymes (PhaPCJAc and PhaABRe) derived from Aeromonas caviae and Ralstonia eutropha were co-expressed in the codon usage-improved Escherichia coli. Under microaerobic culture conditions, this E. coli was able to synthesize P(3HB-co-12.2 mol% 3H4MV) from glucose with the supplementation of 1 g/L leucine. This strain also produced P(3HB-co-12.6 mol% 3H4MV) using the culture supernatant of leucine overproducer E. coli strain NS1391 as the medium for PHA production, achieving 3H4MV copolymer synthesis only from glucose. Furthermore, we tested the feasibility of the 3H4MV copolymer synthesis in E. coli strain NS1391 from glucose. The recombinant E. coli NS1391 was able to synthesize P(3HB-co-3.0 mol% 3H4MV) from glucose without any leucine supplementation. This study demonstrates the potential of the new metabolic pathway for 3H4MV synthesis using leucine metabolism-related enzymes from C. difficile.
  15. Rajagopalu D, Show PL, Tan YS, Muniandy S, Sabaratnam V, Ling TC
    J Biosci Bioeng, 2016 Sep;122(3):301-6.
    PMID: 26922478 DOI: 10.1016/j.jbiosc.2016.01.016
    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
  16. Ragab TIM, Malek RA, Elsehemy IA, Farag MMS, Salama BM, Abd El-Baseer MA, et al.
    J Biosci Bioeng, 2019 Jun;127(6):655-662.
    PMID: 30795878 DOI: 10.1016/j.jbiosc.2018.09.008
    This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.
  17. Phong WN, Show PL, Chow YH, Ling TC
    J Biosci Bioeng, 2018 Sep;126(3):273-281.
    PMID: 29673987 DOI: 10.1016/j.jbiosc.2018.03.005
    Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article.
  18. Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JC
    J Biosci Bioeng, 2018 May 23.
    PMID: 29803402 DOI: 10.1016/j.jbiosc.2018.03.016
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolymers, obtained from microorganisms. Properties like biodegradability and biocompatibility make PHA a part of today's commercial polymer industry. However, the production cost of PHA has been a great barrier to extend its application to large scale production. Substrates and usage of pure cultures constitute the main reason for its high production cost. On the other hand, rapid industrialization i.e., industrial sectors such as sugar, pulp and paper, fruit and food processing, dairies, slaughterhouses, and poultries, has resulted in the generation of the huge quantity of wastes. Consequently, becoming large source of environmental pollution and health hazard. This review emphasizes on the usage of various waste feedstocks obtained from industrial and agricultural industries as an alternate substrate for PHA production. As these waste materials are rich in organic material and also microbes, they can be the good starting material for PHA production. Additionally, advantages and economic importance of mixed cultures and also PHA applications are discussed. Future prospects and challenges in PHA production from waste feedstocks are also highlighted.
  19. Nograles N, Abdullah S, Shamsudin MN, Billa N, Rosli R
    J Biosci Bioeng, 2012 Feb;113(2):133-40.
    PMID: 22093752 DOI: 10.1016/j.jbiosc.2011.10.003
    Alginate, a natural polysaccharide, was explored in this study as an oral delivery vehicle of a mammalian expression vector into the murine intestinal mucosa. Alginate microspheres were produced through water-in-oil (W/O) emulsification method. Average diameter sizes of microspheres were 46.88 μm±3.07 μm with significant size reduction upon utilization of 1.0% Span80. Plasmid DNA (pDNA) carrying green fluorescent protein reporter gene (GFP), pVAX-GFP, was encapsulated within microspheres at efficiencies of 72.9 to 74.4%, carrying maximum load of 6 μg pDNA. Alginate microspheres demonstrated shrinkage in pH 1.2 and swelling in pH 9.0 with pDNA release about twice the amount released in acidic environment. Oral delivery of pVAX-GFP loaded-microspheres, at 50 μg, 100 μg and 150 μg dose, was performed on BALB/c mice. Tissue biodistribution, investigated through flow cytometric analysis, demonstrated GFP positive intestinal cells (<1.0%) with 1.3-fold higher levels for the 100 μg dose; therefore suggesting feasibility of the approach for oral gene delivery and vaccination.
  20. Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR
    J Biosci Bioeng, 2019 Apr;127(4):492-498.
    PMID: 30416001 DOI: 10.1016/j.jbiosc.2018.09.004
    Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links