Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Younas A, Naqvi SA, Khan MR, Shabbir MA, Jatoi MA, Anwar F, et al.
    J Food Biochem, 2020 09;44(9):e13332.
    PMID: 32588917 DOI: 10.1111/jfbc.13332
    Date palm counts among the oldest fruit crops of the world and is mainly cultivated for its highly nutritious fruits consumed as a staple food in many countries, especially in the Gulf region. Dates are enriched with numerous therapeutic bioactives and functional compounds such as phenolics, flavonols, carotenoids, minerals, and vitamins that not only provide an appreciable amount of energy required for the human body but also act as an effective therapeutic agent against several diseases. This review aimed to provide a deep insight into the nutritional as well as phytochemicals profile of date fruit and its seeds in order to explore their biological (anti-cancer, anti-diabetic, cardio-protective, anti-inflammatory properties), functional food, and nutra-pharmaceutical attributes. PRACTICAL APPLICATIONS: This review provides updated information regarding the date fruits and seeds phytochemicals composition together with highlighting dates potential as a natural therapeutic agent against several diseases. The study also urges the importance of consuming dates as a great package to live a healthy life due to the functional food and nutraceutical properties of this valuable fruit. The study also provides information first time as recommending dates to cope with the hidden hunger or micronutrient deficiency faced by the third world inhabitants. Hence, the review may further help the industry and researchers to explore the potential of dates for future medicinal and nutra-pharmaceutical applications.
  2. Wong SK, Chin KY, Ahmad F, Ima-Nirwana S
    J Food Biochem, 2020 Aug 03.
    PMID: 32744348 DOI: 10.1111/jfbc.13371
    This study aimed to evaluate the oxidative stress status, antioxidants capacity, and presence of nonalcoholic fatty liver disease (NAFLD) in an animal model of MetS induced by high-carbohydrate high-fat (HCHF) diet. Male Wistar rats were randomized into two groups, assigned for two different types of diet (standard rat pellet or HCHF diet) for 20 weeks. Liver was excised, weighed, and subjected to lipid peroxidation, nitric oxide (NO·) production, antioxidants activity, and histological assessment. The HCHF rats had higher lipid peroxidation and NO· level but lower enzymatic and nonenzymatic antioxidant levels than the normal animals. Histological evaluation revealed higher lobular inflammation, hepatocellular ballooning, NAFLD activity score, and lipid accumulation in the liver of HCHF group. In conclusion, the HCHF diet causes an increase in oxidative stress, depletion of antioxidants capacity, NAFLD, and liver injury. The induction of oxidative stress may be partially responsible for the development of NAFLD in MetS. PRACTICAL APPLICATIONS: The prevalence of MetS is estimated to increase rapidly with the escalating levels of obesity, diabetes, hypertension, and dyslipidemia. A suitable animal model of MetS that best mimicked the human disease state with known underlying mechanisms responsible for the pathogenesis of MetS is indispensable to search for potential adjunct therapies and drug targets. Thus, our current study elucidated the involvement of oxidative stress in linking MetS and NAFLD which might resemble the pathogenesis of MetS among Southeast Asian population.
  3. Wan Osman WN, Che Ahmad Tantowi NA, Lau SF, Mohamed S
    J Food Biochem, 2019 03;43(3):e12755.
    PMID: 31353568 DOI: 10.1111/jfbc.12755
    The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia L. (MC) Noni leaves are non-toxic (unlike the fruits) and consumed as vegetables. The anti-osteoarthritis effects of the MC leaf extract against joint cartilage degradation and inflammation were investigated through cartilage explant cultures and pre-clinical animal study. Osteoarthritis were induced by intra-articular monosodium iodoacetate injection into the right knee. The extract, scopoletin and epicatechin, suppressed glycosaminoglycan and nitric oxide release from the cartilage explant in the presence of Interleukin-1β. After 28 days, the extract treatment reduced the in vivo serum levels and joint tissues mRNA expressions for joint cartilage degradation, aggrecanase, and collagenase biomarkers. The extract increased the bone formation marker PINP levels, besides improving the articular cartilage structure and chondrocytes cellularity. The extract improved bone formation/repair, subchondral bone structure, strength and integrity, as well as cartilage synthesis by suppressing inflammation, nitric oxide production, joint catabolism by proteases, and oxidative stress. PRACTICAL APPLICATIONS: The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia (Noni) leaves may be used as vegetables, functional food ingredient, or dietary supplements to suppress osteoarthritis progression against joint cartilage degradation and inflammation. The extract, scopoletin, or epicatechin, suppressed glycosaminoglycan, and nitric oxide release from the cartilage. The Morinda citrifolia leaf extract suppressed inflammation, nitric oxide production, tissues catabolism by proteases and oxidative stress to help reduce joint cartilage degradation, besides improving the articular cartilage structure, chondrocytes health, subchondral bone structure, bone formation/repair, and cartilage synthesis.
  4. Wadhwa R, Paudel KR, Chin LH, Hon CM, Madheswaran T, Gupta G, et al.
    J Food Biochem, 2021 01;45(1):e13572.
    PMID: 33249629 DOI: 10.1111/jfbc.13572
    In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.
  5. Umran NSS, Mohamed S, Lau SF, Mohd Ishak NI
    J Food Biochem, 2020 08;44(8):e13258.
    PMID: 32539198 DOI: 10.1111/jfbc.13258
    Diabetic cataract causes severe vision loss. This study evaluated the effects of hesperidin-standardized Citrus hystrix leaf flavonoids-rich extract (CLE) on diabetic-cataract development. Streptozotocin-induced diabetic rats were orally given 150 and 300 mg CLE/kg body-weight. These were compared with non-treated diabetic or healthy rats as controls, over 8 weeks. The CLE gradually attenuated fasting blood glucose (FBG), biomarkers for inflammation (Tumor necrosis factor alpha TNF-α; prostaglandin E2 PGE2); vascular permeability, (Vascular endothelial growth factor VEGF); and oxidative stress, (malondialdehyde MDA). The diabetic cataract was significantly mitigated by the 150 mg CLE/kg dose. Good correlations were found between cataract incidence with FBG (r2  = 0.90), serum PGE2 (r2  = 0.91), MDA (r2  = 0.99), VEGF (r2  = 0.71), but not with TNF-α levels (r2  = 0.49) suggesting the serum FBG, PGE2, MDA, and possibly the VEGF levels may help to predict the cataract risks. The CLE mitigated cataract probably by attenuating hyperglycaemia, inflammation, lens fluid influx, vascular leakage, lens osmotic-imbalance, and fibers over-hydration. PRACTICAL APPLICATIONS: The study shows the flavonoids-rich Citrus hystrix leaf consumption, effectively attenuated diabetes (fasting blood glucose) and mitigated diabetic cataract. It help reduce diabetes-related hyperglycaemia, oxidative stress, inflammation, and vascular leakage. The evidences were the CLE consumptions reduced the serum biomarkers tumor necrosis factor-alpha TNF-α; prostaglandin E2 PGE2, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA). The C. hystrix leaf contains hesperidin, apiin, diosmin, saponarin, apigetrin, rutin and xanthotoxol, and other flavonoid glucosides. The study also showed good correlations between cataract incidence with fasting blood glucose FBG (r2  = 0.90), serum PGE2 (r2  = 0.91), and MDA (r2  = 0.99), and less closely with VEGF (r2  = 0.71) suggesting these serum biomarkers may help predict cataract risks. The CLE indicated cataract mitigation properties probably by attenuating FBG, inflammation, lens fluid influx, lens osmotic-imbalance, and fibers over-hydration.
  6. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
  7. Salleh SZ, Hamid AA, Jaafar AH, Abdul Majid ND, Saari N, Halim HH, et al.
    J Food Biochem, 2022 Jan;46(1):e14027.
    PMID: 34914111 DOI: 10.1111/jfbc.14027
    Ergogenic property is the ability to enhance capacity for physical activities through efficient production of energy and is potentially beneficial in weight management for the obese. In this study, ergogenic property of Morinda citrifolia leaf's extract (MCL) was evaluated using AMP-activated protein kinase (AMPK) activity and high fat diet-induced obese rats. Findings from the study showed that MCL demonstrated ergogenic activity via enhancement of AMPK activity using L6 skeletal muscle cell line. Interestingly, the result also revealed that rats treated with the intermediate dosage of MCL experienced the lowest % weight gain. The rats fed the highest dose of 200 mg/kg BW MCL demonstrated the longest swimming time of approximately three times that of green tea and caffeine-fed rats. The highest dose fed rats were also found to have lower glucose and lactate levels, suggesting that energy metabolism was more effective in these rats. In addition, lactate dehydrogenase and creatinine kinase activities, the muscle injury indicators, were found to be the lowest in rats fed the highest MCL dose. The same effect was not seen in rats fed either caffeine or green tea, indicating that MCL treatment is may be protective of the rats' muscles. It was also shown that MCL consisted of various flavonoids with epicatechin, catechin, and quercetin that may be responsible for the effects measured. In conclusion, improvements were seen in rats fed MCL in terms of weight management, endurance capacity, energy metabolism, and muscle injury parameters. PRACTICAL APPLICATIONS: Results of the study revealed that Morinda citrifolia leaf has great potential to be used as functional ingredient in the development of designer food/drink as ergogenic aid for both obese and non-obese individuals. Morinda citrifolia leaf could help in the weight management of obese people and enhance endurance capacity and energy metabolism in active individuals.
  8. Ru YR, Wang ZX, Li YJ, Kan H, Kong KW, Zhang XC
    J Food Biochem, 2021 Aug 02.
    PMID: 34338334 DOI: 10.1111/jfbc.13887
    In this study, the walnut flowers were fermented using five different probiotics, including two Lactobacillus plantarum, one Lactobacillus bulgaricus, one Lactobacillus casei, and one Lactobacillus rhamnosus. The chemical compositions, antioxidant capacities, and α-glucosidase inhibitory abilities of walnut flowers during fermentation processes were evaluated. The results showed that all the active compounds and bioactivities of the walnut flowers were significantly decreased after 7 days of fermentation, whereas a short-term fermentation (1-3 days) enhanced their bioactivities. Compared to the unfermented sample, L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 53013) increased the ABTS (1.22 and 1.30 times higher) and DPPH radical scavenging activities (up to 1.23 and 1.04 times), respectively. L. plantarum (SWFU D16), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 53013) improved the ferric reducing antioxidant power which was 110.98%, 133.16%, and 104.76% of the unfermented sample. All five probiotics promoted the α-glucosidase inhibitory ability of walnut flowers (maximum 2.18-fold increase). Three phenolic acids and five flavonoids in the fermentation broth were identified by HPLC, where catechin, epicatechin, and catechin gallate were the dominant components. HPLC results demonstrated that these compounds were degraded and transformed in varying degrees under the effects of probiotics. Taken together, a short-term probiotic fermentation could change the active compounds of the walnut flowers and improve their bioactivities. L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 334) are suggested as suitable strains in producing the fermented walnut flowers. The research findings could further support the development and utilization of walnut flowers as a fermented functional food. PRACTICAL APPLICATIONS: Walnut flowers have been used as fermented food in southwestern China, but their active components and functional activities during fermentation processes are still unclear. This study found that different probiotic fermentation exerted a strong and varied influence on the chemical composition and biological activities of the walnut flowers. A short-term fermentation has significantly improved their antioxidant capacities and α-glucosidase inhibitory abilities, whereas the longer period of fermentation, caused a significant loss of both their active compounds and bioactivities. These findings are useful as a reference for the manufacturers of fermented walnut flowers in selecting suitable strains and fermentation time for their products.
  9. Paudel KR, Patel V, Vishwas S, Gupta S, Sharma S, Chan Y, et al.
    J Food Biochem, 2022 Dec;46(12):e14445.
    PMID: 36239436 DOI: 10.1111/jfbc.14445
    Nutraceuticals have emerged as potential compounds to attenuate the COVID-19 complications. Precisely, these food additives strengthen the overall COVID treatment and enhance the immunity of a person. Such compounds have been used at a large scale, in almost every household due to their better affordability and easy access. Therefore, current research is focused on developing newer advanced formulations from potential drug candidates including nutraceuticals with desirable properties viz, affordability, ease of availability, ease of administration, stability under room temperature, and potentially longer shelf-lives. As such, various nutraceutical-based products such as compounds could be promising agents for effectively managing COVID-19 symptoms and complications. Most importantly, regular consumption of such nutraceuticals has been shown to boost the immune system and prevent viral infections. Nutraceuticals such as vitamins, amino acids, flavonoids like curcumin, and probiotics have been studied for their role in the prevention of COVID-19 symptoms such as fever, pain, malaise, and dry cough. In this review, we have critically reviewed the potential of various nutraceutical-based therapeutics for the management of COVID-19. We searched the information relevant to our topic from search engines such as PubMed and Scopus using COVID-19, nutraceuticals, probiotics, and vitamins as a keyword. Any scientific literature published in a language other than English was excluded. PRACTICAL APPLICATIONS: Nutraceuticals possess both nutritional values and medicinal properties. They can aid in the prevention and treatment of diseases, as well as promote physical health and the immune system, normalizing body functions, and improving longevity. Recently, nutraceuticals such as probiotics, vitamins, polyunsaturated fatty acids, trace minerals, and medicinal plants have attracted considerable attention and are widely regarded as potential alternatives to current therapeutic options for the effective management of various diseases, including COVID-19.
  10. Ong CB, Annuar MSM
    J Food Biochem, 2021 10;45(10):e13924.
    PMID: 34490635 DOI: 10.1111/jfbc.13924
    Multi-walled carbon nanotubes (MWCNT)-tannase composite was investigated as an immobilized biocatalyst on the basis of its facile preparation, low cost, and excellent aqueous dispersibility. Cross-linked tannase enzymes, obtained in the presence of glutaraldehyde, were composited with MWCNT via physical adsorption. Multiple techniques were applied to investigate, and corroborate the successful adsorption of cross-linked tannase onto the MWCNT structure. Green tea infusion extract post-treatment using the composite preparation showed elevated radical scavenging activities relative to the control. Green tea infusion extract exhibited a markedly reduced EC50 value on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals following its treatment with the enzyme composite, which represents 20%-34% enhancement in its free radical scavenging capacity. Stoichiometry and number of reduced DPPH were determined and compared. The antioxidative potential of a widely consumed, health-beneficial green tea is elevated by the treatment with MWCNT-tannase composite. PRACTICAL APPLICATIONS: Cross-linked tannase enzymes were composited with pristine multi-walled carbon nanotubes via simple physical adsorption. The composite presents key advantages such as low specific volume compared to other well-known immobilization media, inert, facile enzyme composition, and ease of recovery for repeated use. The work demonstrated carbon nanotube prosthetic utility in the biotransformation of food-based health commodity sought after for its nutritional benefits. The approach is of both industrial- and agricultural importance, and is a promising and viable strategy to obtain a natural, functional food supplement for the multi-billion dollar well-being and health-related industries.
  11. Oh HKF, Siow LF, Lim YY
    J Food Biochem, 2019 07;43(7):e12856.
    PMID: 31353691 DOI: 10.1111/jfbc.12856
    Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.
  12. Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI
    J Food Biochem, 2021 11;45(11):e13948.
    PMID: 34622461 DOI: 10.1111/jfbc.13948
    Diabetes affected about a quarter of a billion people globally, and one out of four diabetics has eye or vision problems. This study investigated whether gallic acid and myricetin-rich Labisia pumila extract (LP) consumption would help prevent diabetic eye disorders and some probable biochemistry involved relating to inflammation, vascular leakage, and oxidative tension. Male rats were divided into four groups (n = 6), namely healthy control, diabetic non-treated control, and hyperglycemic rats treated with 150 or 300 mg/kg LP. Intraperitoneal injection of 60 mg/kg streptozotocin was used to induce diabetes. Rats were fed in the morning and evening. Diabetic retinopathy was graded in rats using a dilated retinal digital ophthalmoscopy. Rats were sacrificed at 12 weeks and the retina, optic nerve, cornea, lens, sclera, ciliary bodies, iris, and conjunctiva were examined histologically. The diabetic rats consuming LP for 10 weeks showed dose-dependent, histopathologically-reduced eye abnormalities (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal changes). The LP significantly suppressed inflammation [increased serum tumor necrosis factor-α (TNF-α), prostaglandin-E2 (PGE2)], vascular leakage [claudin-1], abnormal vascularization [vascular endothelial growth factor (VEGF)], oxidative tension [malondialdehyde/reduced glutathione ratio], and hyperglycemia [fasting blood glucose] of the diabetic rats. The LP consumption was significantly protective against diabetic eye disorders and optic nerve dysfunction which were related to inflammation, vascular leakage, abnormal vascularization, and oxidative tension, which most likely influenced eye hemorrhage and collagen cross-linkage. PRACTICAL APPLICATIONS: The study shows that gallic acid and myricetin-rich Labisia pumila (LP) leaf consumption may be used as a complementary therapy for managing diabetes (fasting blood glucose) and preventing diabetic eye disorders (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal abnormalities). The LP consumptions reduced the serum biomarkers for inflammation (serum tumor necrosis factor-α TNF-α; prostaglandin-E2), vascular leakage/abnormalities (claudin-1 and vascular endothelial growth factor VEGF), and oxidative tension (malondialdehyde/reduced glutathione MDA/GSH ratio). The LP was eye-protective probably by normalizing fasting blood glucose, reducing inflammation, oxidative tension, vascular leakage, and irregular vascularization.
  13. Nagamma T, Konuri A, Bhat KMR, Maheshwari R, Udupa P, Nayak Y
    J Food Biochem, 2021 04;45(4):e13690.
    PMID: 33749834 DOI: 10.1111/jfbc.13690
    This study evaluates the modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. (PE-TFG) seed extract in ovariectomized rats. The HPTLC method was used for standardization and to quantify the diosgenin in PE-TFG. For testing PE-TFG in rats, the total duration of treatment was 12-weeks, and the rats were sacrificed on week 12. The tissue samples such as blood, liver, heart, and aorta were isolated for testing inflammatory markers such as adiponectin, leptin, PPAR-γ, TNF-α, lipid profile, hepatic markers, antioxidants, and oxidative stress markers. The PE-TFG treatment decreased the elevation of total cholesterol, triglyceride, AST, and ALT. Upon PE-TFG treatment, there was a significant increase in adiponectin and PPAR-γ mRNA expression. Leptin and TNF-α were normal after treatment with PE-TFG seed extract. Further, micro-steatosis of hepatocytes marked glomerular hypertrophy in the kidney and increased thickness of tunica intima and media of common carotid artery was reversed after treatment with PE-TFG. PRACTICAL APPLICATIONS: Trigonella foenum-graecum L. is a curative plant used to treat inflammatory conditions like diabetes, obesity, dyslipidemia, arthritis, cancer, and digestive disorders. In our study, PE-TFG supplementation has a protective effect on OVX-induced inflammation, oxidative stress, mRNA expression of adiponectin and PPAR-γ, hepatic steatosis, and decreased thickness of tunica intima and media of common carotid artery.
  14. Mustafa SM, Chua LS, El-Enshasy HA, Abd Majid FA, Hanapi SZ, Abdul Malik R
    J Food Biochem, 2019 04;43(4):e12805.
    PMID: 31353583 DOI: 10.1111/jfbc.12805
    This study was focused on the effects of fermentation temperature and pH on the quality of Punica granatum juice probioticated with Lactobacillus species: Lactobacillus plantarum, Lactobacillus casei, Lactobacillus bulgaricus, and Lactobacillus salivarius. The whole fruit juice of P. granatum which is rich with phytonutrients appeared to be a good probiotic carrier. The probiotication was carried out for 24 hr at 30, 35, and 37°C and pH 2.5, 4.0, and 5.5 under microaerophilic conditions. The results found that P. granatum juice cultivated with L. casei had a better growth profile with a higher biomass density at 37°C around pH 3.5-4.0. Probiotication could maintain the scavenging activity of P. granatum juice cultivated with L. casei. The scavenging activity achieved up to 90% inhibition at the concentration of 5 mg/ml. The whole fruit-squeezed P. granatum juice was suitable for the growth of Lactobacillus species even without supplementation during cultivation. PRACTICAL APPLICATIONS: The findings of this study presented the potential of P. granatum juice (whole fruit) to be used as a good probiotic carrier, particularly for Lactobacillus species without supplementation. High nutritious P. granatum juice catered the need of probiotic bacteria during fermentation. Probiotication could maintain the antioxidant capacity of the juice in term of its radical scavenging activity. The antioxidant capacity was mainly attributed to the metabolites such as phenolic acids (romarinic acid and caftaric acid) and flavonoids (quercetin, quercetin 3-glucoside, rutin and kaempferol rutinoside). With the optimized temperature (37°C) and pH (4.00), probiotic bacteria could growth well up to a cell viability of 2.46 × 1010  cfu/ml. This offers P. granatum to be developed into functional food to cater to the needs of the consumers who are lactose intolerant to dairy products.
  15. Mohamed Yunus SN, Abdul-Hamid NA, Jaafar AH, Lawal U, Abas F
    J Food Biochem, 2021 02;45(2):e13610.
    PMID: 33491203 DOI: 10.1111/jfbc.13610
    Mangifera caesia and Ficus auriculata are neglected fruits found in Malaysia and are locally known as "buah binjai" and "buah ara", respectively. To profile the metabolites for both fruits, we conducted a robust 1 H-nuclear magnetic resonance (NMR)-based metabolomics approach. Principal component analysis (PCA) and partial least square (PLS) analyses were applied to distinguish the metabolites variations of M. caesia and F. auriculata fruits extracted with different ethanol ratios (0, 70, and 100%). In total, 34 metabolites were identified in M. caesia and F. auriculata fruits. The 70% ethanol extracts of both fruits displayed the highest antioxidant and α-glucosidase inhibitory activities, as well as notable with the highest phenolic content, compared with the other samples. The present metabolomics study shows that the polarities of solvent extractions play a crucial role in the assessment and recovery of the metabolites for the high value of natural antioxidants and α-glucosidase inhibitors in M. caesia and F. auriculata fruits. PRACTICAL APPLICATIONS: Antioxidant and antidiabetic agents from fruit sources are increasingly becoming popular due to its potential contributions to human health, by protecting against infections and degenerative diseases. However, some of these fruits were neglected where the scientific data on their potential benefits and biochemical contents are lacking. The information gained from this study provides valuable knowledge on M. caesia and F. auriculata fruits as natural antioxidant and α-glucosidase inhibitors agents that might be beneficial to consumers, further promote the usage of neglected fruits as functional food and natural supplements.
  16. Mehta M, Malyla V, Paudel KR, Chellappan DK, Hansbro PM, Oliver BG, et al.
    J Food Biochem, 2021 11;45(11):e13954.
    PMID: 34609010 DOI: 10.1111/jfbc.13954
    Metastasis represents the leading cause of death in lung cancer patients. C-X-C Motif Chemokine Ligand 8 (CXCL-8), Chemokine (C-C motif) ligand 20 (CCL-20) and heme oxygenase -1 (HO-1) play an important role in cancer cell proliferation and migration. Berberine is an isoquinoline alkaloid isolated from several herbs in the Papaveraceae family that exhibits anti-inflammatory, anticancer and antidiabetic properties. Therefore, the aim of present study is to investigate the inhibitory potential of berberine monoolein loaded liquid crystalline nanoparticles (berberine-LCNs) against cancer progression. Berberine-LCNs were prepared by mixing berberine, monoolein and poloxamer 407 (P407) using ultrasonication method. A549 cells were treated with or without 5 µM dose of berberine LCNs for 24 hr and total cellular protein was extracted and further analyzed for the protein expression of CCl-20, CXCL-8 and HO-1 using human oncology array kit. Our results showed that berberine-LCNs significantly reduced the expression of CCl-20, CXCL-8 and HO-1 at dose of 5µM. Collectively, our findings suggest that berberine-LCNs have inhibitory effect on inflammation/oxidative stress related cytokines i.e. CCL20, CXCL-8, and HO-1 which could be a novel therapeutic target for the management of lung cancer. PRACTICAL APPLICATIONS: Berberine is an isoquinoline alkaloid extracted from various plants of Papaveraceae family. CXCL-8, CCL-20 and HO-1 play an important role in cancer progression. Our study showed that Berberine LCNs significantly downregulate the expression of CXCL-8, CCL-20 and HO-1 which suggests that Berberine loaded nanoparticles could be a promising therapeutic alternative for the management of lung cancer.
  17. Jibril MM, Haji-Hamid A, Abas F, Karrupan J, Mohammed AS, Jaafar AH, et al.
    J Food Biochem, 2022 Feb;46(2):e14058.
    PMID: 34981526 DOI: 10.1111/jfbc.14058
    The present research aimed to investigate the attenuative effects of watermelon (Citrullus lanatus) leaf extract on biochemical and histological parameters in a high-fat diet combined with a low-dose streptozotocin (HFD/STZ)-induced type 2 diabetes mellitus. Forty male Sprague Dawley rats were divided into five groups, including three supplemented groups: 10 mg metformin/kg BW (HFD/STZ +M), 200 mg watermelon leaf extract /kg BW (HFD/STZ + LD), and 400 mg watermelon leaf extract /kg BW (HFD/STZ + HD). The efficacy of the 6-week intervention was evaluated by measuring body weight, fasting blood sugar, serum insulin, lipid profile, superoxide dismutase, catalase, malondialdehyde, and serum liver markers. Kidneys and liver structure were defined by histopathological examination. Results revealed that intervention with watermelon leaf extract attenuated the biochemical parameters and the structural changes in kidneys and liver. In brief, the watermelon leaf extract treatment could effectively decrease complications associated with diabetes better than metformin, and that the treatment with 400 mg/kg BW is the most potent. PRACTICAL APPLICATIONS: This was the first study to investigate the antidiabetic potential of watermelon leaf extract in obese diabetic rats. Data revealed that the watermelon leaf extract significantly attenuated the HFD/STZ-induced diabetes changes, as evidenced by the biochemical and histological data. Hence, watermelon leaf could be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for holistic management of diabetes mellitus and its complications.
  18. Habib MAH, Ismail MN
    J Food Biochem, 2021 07;45(7):e13817.
    PMID: 34137461 DOI: 10.1111/jfbc.13817
    The fruit and leaf of God's crown (Phaleria macrocarpa) have been traditionally used to treat a wide variety of diseases. However, the proteins of this tropical plant are still heavily understudied. Three protein extraction methods; phenol (Phe), trichloroacetic acid (TCA)-acetone-phenol (TCA-A-Phe), and ultrasonic (Ult) were compared on the fruit and leaf of P. macrocarpa. The Phe extraction method showed the highest percentage of recovered protein after the resolubilization process for both leaf (12.24%) and fruit (30.41%) based on protein yields of the leaf (6.15 mg/g) and fruit (36.98 mg/g). Phe and TCA-A-Phe extraction methods gave well-resolved bands over a wide range of molecular weights through sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following liquid chromatography-tandem mass spectrometry analysis, proteins identified through the Phe extraction method were 30%-35% enzymatic proteins, including oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases that possess various biological functions. PRACTICAL APPLICATIONS: Every part of God's crown plant is traditionally consumed to treat various illnesses. While plant's benefits are well known and have led to a plethora of health products, the proteome remains mostly unknown. This study compares three protein extraction methods for the leaf and fruit of P. macrocarpa and identifies their proteins thru LC-MS/MS coupled with PEAKS. These method comparisons can be a guide for works on other plants as well. In addition, the proteomics data from this study may shed light on the functional properties of these plant parts and their products.
  19. Gao X, Xue Z, Ma Q, Guo Q, Xing L, Santhanam RK, et al.
    J Food Biochem, 2020 02;44(2):e13126.
    PMID: 31877235 DOI: 10.1111/jfbc.13126
    Garlic protein (GP) was enzymatically hydrolyzed using pepsin and trypsin followed by the evaluation of antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of GP and its hydrolysates. The antihypertensive effects of GP and its hydrolysates were determined in vivo. The results showed that GP and its hydrolysates namely GPH-P (pepsin) and GPH-T (trypsin) possessed appreciable antioxidant and ACE inhibitory activities. The ACE inhibitory activity of GP, GPH-T, and GPH-P was in consistent with their antioxidant activities. GP and its hydrolysates offered significant protective effects against H2 O2 -induced oxidative damage (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links