Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Aziman N, Abdullah N, Noor ZM, Kamarudin WS, Zulkifli KS
    J Food Sci, 2014 Apr;79(4):M583-92.
    PMID: 24666004 DOI: 10.1111/1750-3841.12419
    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
  2. Hassan N, Ahmad T, Zain NM
    J Food Sci, 2018 Dec;83(12):2903-2911.
    PMID: 30440088 DOI: 10.1111/1750-3841.14370
    The issue of food authenticity has become a concern among religious adherents, particularly Muslims, due to the possible presence of nonhalal ingredients in foods as well as other commercial products. One of the nonhalal ingredients that commonly found in food and pharmaceutical products is gelatin which extracted from porcine source. Bovine and fish gelatin are also becoming the main commercial sources of gelatin. However, unclear information and labeling regarding the actual sources of gelatin in food and pharmaceutical products have become the main concern in halal authenticity issue since porcine consumption is prohibited for Muslims. Hence, numerous analytical methods involving chemical and chemometric analysis have been developed to identify the sources of gelatin. Chemical analysis techniques such as biochemical, chromatography, electrophoretic, and spectroscopic are usually combined with chemometric and mathematical methods such as principal component analysis, cluster, discriminant, and Fourier transform analysis for the gelatin classification. A sample result from Fourier transform infrared spectroscopy analysis, which combines Fourier transform and spectroscopic technique, is included in this paper. This paper presents an overview of chemical and chemometric methods involved in identification of different types of gelatin, which is important for halal authentication purposes.
  3. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
  4. Lioe HN, Selamat J, Yasuda M
    J Food Sci, 2010 Apr;75(3):R71-6.
    PMID: 20492309 DOI: 10.1111/j.1750-3841.2010.01529.x
    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
  5. Huynh HL, Danhi R, Yan SW
    J Food Sci, 2016 Jan;81(1):S150-5.
    PMID: 26613570 DOI: 10.1111/1750-3841.13171
    Historically, fish sauce has been a standard condiment and ingredient in various Southeast Asian cuisines. Moreover, fish sauce imparts umami taste, which may enhance perceived saltiness in food. This quality suggests that fish sauce may be used as a partial substitute for sodium chloride (NaCl) in food preparation, which may present a valuable option for health-conscious and salt-restricted consumers. However, the degree to which NaCl can be decreased in food products without compromising taste and consumer acceptance has not been determined. We hypothesized that NaCl content in food may be reduced by partial replacement with fish sauce without diminishing palatability and consumer acceptance. Preparations of 3 types of food were assessed to test this hypothesis: chicken broth (n = 72); tomato sauce (n = 73); and coconut curry (n = 70). In the first session, the percentage of NaCl that could be replaced with fish sauce without a significant change in overall taste intensity was determined for each type of food using the 2-Alternative Forced Choice method. In the second session, subjects rated 5 samples for each food with varying NaCl and/or fish sauce content on 3 sensory attributes: deliciousness; taste intensity; and saltiness. Our results demonstrate that NaCl reduction was possible in chicken broth, tomato sauce, and coconut curry at 25%, 16%, and 10%, respectively, without a significant loss (P < 0.05) in deliciousness and overall taste intensity. These results suggest that it is possible to replace NaCl in foods with fish sauce without reducing overall taste intensity and consumer acceptance.
  6. Yue CS, Lim AK, Chia ML, Wong PY, Chin JSR, Wong WH
    J Food Sci, 2023 Feb;88(2):650-665.
    PMID: 36624628 DOI: 10.1111/1750-3841.16404
    In this study, an improved dansyl-chloride derivatization technique using a microwave synthesizer was used for the qualitative and quantitative analyses of biogenic amine in the fresh meat samples. The derivatization technique was optimized in terms of temperature, reaction time, and spinning speed. The derivatization method together with a validated reversed-phase HPLC-DAD method was used for the determination of biogenic amines in chicken, beef, and mutton sold in the wet market. The results of the analyses showed that tryptamine, putrescine, and histamine were generally detected in all the three types of meat. Higher levels of histamine were found in chicken and beef. However, low levels of histamine were observed in mutton. Tyramine was either detected low or moderate in all the three types of meat. The biogenic amines of the fresh meat sold in the wet market is generally higher than the reported values. The mechanisms of biogenic amines-dansyl-chloride formation were investigated and proposed. PRACTICAL APPLICATION: The biogenic amine derivatization method was improved. The improved derivatization method can be potentially used for various food products beside meats for routine biogenic amine analyses due to its fast analysis time and simplicity. High levels of biogenic amines were generally found in the meat sold in the wet markets. However, proper handling of the raw meat can reduce the risk of infection.
  7. Giwa Ibrahim S, Karim R, Saari N, Wan Abdullah WZ, Zawawi N, Ab Razak AF, et al.
    J Food Sci, 2019 Aug;84(8):2015-2023.
    PMID: 31364175 DOI: 10.1111/1750-3841.14714
    Kenaf belongs to the family Malvaceae noted for their economic and horticultural importance. Kenaf seed is a valuable component of kenaf plant. For several years, it has been primarily used as a cordage crop and secondarily as a livestock feed. The potential for using kenaf seeds as a source of food-based products has not been fully exploited. Consumers are becoming more interested in naturally healthy plant-based food products. Kenaf seed, the future crop with a rich source of essential nutrients and an excellent source of phytocompounds, might serve suitable roles in the production of value-added plant-based foods. At present kenaf seed and its value-added components have not been effectively utilized for both their nutritional and functional properties as either ingredient or major constituent of food products. This review focuses on the possible food applications of kenaf seed and its value-added components based on their nutritional composition and functional properties available in literature, with the purpose of providing an overview on the possible food applications of this underutilized seed. The review focuses on a brief introduction on kenaf plant, nutritional function, lipids and proteins composition and food applications of the seed. The review elaborately discusses the seed in terms of; bioactive components, antioxidants enrichment of wheat bread, antimicrobial agents, as edible flour, as edible oil and a source of protein in food system. The review closes with discussion on other possible food applications of kenaf seed. The need for food scientists and technologists to exploit this natural agricultural product as a value-added food ingredient is of great significance and is emphasized.
  8. Ong YY, Tan WS, Rosfarizan M, Chan ES, Tey BT
    J Food Sci, 2012 Oct;77(10):M560-4.
    PMID: 22924854 DOI: 10.1111/j.1750-3841.2012.02894.x
    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans.
  9. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
  10. Pak-Dek MS, Abdul-Hamid A, Osman A, Soh CS
    J Food Sci, 2008 Oct;73(8):C595-8.
    PMID: 19019102 DOI: 10.1111/j.1750-3841.2008.00929.x
    Efficacy of Morinda citrifolia L. leaf (MLE) and fruit extracts (MFE) in inhibiting lipoprotein lipase (LPL) was determined in vitro. The result of the study showed that the highest inhibition on the LPL activity was exhibited by MLE (66%+/- 2.1%), which is significantly higher than that demonstrated by MFE (54.5%+/- 2.5%), green tea extract (GTE) (54.5%+/- 2.6%), and catechin (43.6%+/- 6.1%). Percent of LPL inhibition increase with concentration of the extracts. Quantitative analysis of the extracts revealed the presence of high levels of (+)-catechin at 63.5 +/- 17 and 53.7 +/- 5.7 mg/g in MLE and MFE, respectively, although not as high as that found in GTE (530.6 +/- 42 mg/g). Appreciable amount of epicatechin was found in all extracts tested, while rutin was only found in MLE and MFE. The study suggested that both leaf and fruit of M. citrifolia may be used as antiobesity agents in body weight management.
  11. Dianawati D, Mishra V, Shah NP
    J Food Sci, 2016 Jun;81(6):M1472-9.
    PMID: 27145163 DOI: 10.1111/1750-3841.13313
    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment.
  12. Dianawati D, Lim SF, Ooi YBH, Shah NP
    J Food Sci, 2017 Sep;82(9):2134-2141.
    PMID: 28843042 DOI: 10.1111/1750-3841.13820
    The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C.
  13. Shaik MI, Kadir ANA, Sarbon NM
    J Food Sci, 2024 Jan;89(1):320-329.
    PMID: 38051010 DOI: 10.1111/1750-3841.16858
    The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
  14. Al-Zuaidy MH, Hamid AA, Ismail A, Mohamed S, Abdul Razis AF, Mumtaz MW, et al.
    J Food Sci, 2016 May;81(5):C1080-90.
    PMID: 27074520 DOI: 10.1111/1750-3841.13293
    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.
  15. Reddy KR, Farhana NI, Salleh B
    J Food Sci, 2011 May;76(4):T99-104.
    PMID: 22417376 DOI: 10.1111/j.1750-3841.2011.02133.x
    Malaysian population widely consumes the cereal-based foods, oilseeds, nuts, and spices in their daily diet. Mycotoxigenic fungi are well known to invade food products under storage conditions and produce mycotoxins that have threat to human and animal health. Therefore, determining toxigenic fungi and aflatoxin B(1) (AFB1) in foods used for human consumption is of prime importance to develop suitable management strategies and to minimize risk. Ninety-five food products marketed in Penang, Malaysia were randomly collected from different supermarkets and were analyzed for presence of Aspergillus spp. by agar plate assay and AFB1 by enzyme-linked immunosorbent assay (ELISA). A. flavus was the dominant fungi in all foods followed by A. niger. Fifty-five A. flavus strains were tested for their ability to produce aflatoxins on rice grain substrate. Thirty-six (65.4%) strains out of 55 produced AFB1 ranging from 1700 to 4400 μg/kg and 17 strains (31%) produced AFB2 ranging from 620 to 1670 μg/kg. Natural occurrence of AFB1 could be detected in 72.6% food products ranging from 0.54 to 15.33 μg/kg with a mean of 1.95 μg/kg. Maximum AFB1 levels were detected in peanut products ranging from 1.47 to 15.33 μg/kg. AFB1 levels detected in all food products were below the Malaysian permissible limits (<35 μg/kg). Aspergillus spp. and AFB1 was not detected in any cookies tested. Although this survey was not comprehensive, it provides valuable information on aflatoxin levels in foods marketed in Malaysia.
  16. Muhialdin BJ, Hassan Z, Sadon SKh
    J Food Sci, 2011 Sep;76(7):M493-9.
    PMID: 21806613 DOI: 10.1111/j.1750-3841.2011.02292.x
    In the search for new preservatives from natural resources to replace or to reduce the use of chemical preservatives 4 strains of lactic acid bacteria (LAB) were selected to be evaluated for their antifungal activity on selected foods. The supernatants of the selected strains delayed the growth of fungi for 23 to 40 d at 4 °C and 5 to 6 d at 20 and 30 °C in tomato puree, 19 to 29 d at 4 °C and 6 to 12 d at 20 and 30 °C in processed cheese, and 27 to 30 d at 4 °C and 12 to 24 d at 20 and 30 °C in commercial bread. The shelf life of bread with added LAB cells or their supernatants were longer than normal bread. This study demonstrates that Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, L. pentosus G004, and L. paracasi D5 either the cells or their supernatants could be used as biopreservative in bakery products and other processed foods.
  17. Zarei M, Ghanbari R, Tajabadi N, Abdul-Hamid A, Bakar FA, Saari N
    J Food Sci, 2016 Feb;81(2):C341-7.
    PMID: 26720491 DOI: 10.1111/1750-3841.13200
    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.
  18. Muhialdin BJ, Hassan Z, Abu Bakar F, Algboory HL, Saari N
    J Food Sci, 2015 May;80(5):M1026-30.
    PMID: 25847317 DOI: 10.1111/1750-3841.12844
    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.
  19. Mousa W, Ghazali FM, Jinap S, Ghazali HM, Radu S
    J Food Sci, 2013 Jan;78(1):M56-63.
    PMID: 23301606 DOI: 10.1111/j.1750-3841.2012.02986.x
    The aim of this study was to model the radial growth rate and to assess aflatoxin production by Aspergillus flavus as a function of water activity (a(w) 0.82 to 0.92) and temperature (12 to 42 °C) on polished and brown rice. The growth of the fungi, expressed as colony diameter (mm) was measured daily, and the aflatoxins were analyzed using HPLC with a fluorescence detector. The growth rates were estimated using the primary model of Baranyi, which describes the change in colony radius as a function of time. Total of 2 secondary models were used to describe the combined effects of a(w) and temperature on the growth rates. The models were validated using independent experimental data. Linear Arrhenius-Davey model proved to be the best predictor of A. flavus growth rates on polished and brown rice followed by polynomial model. The estimated optimal growth temperature was around 30 °C. A. flavus growth and aflatoxins were not detected at 0.82 a(w) on polished rice while growth and aflatoxins were detected at this a(w) between 25 and 35 °C on brown rice. The highest amounts of toxins were formed at the highest a(w) values (0.90 to 0.92) at a temperature of 20 °C after 21 d of incubation on both types of rice. Nevertheless, the consistencies of toxin production within a wider range of a(w) values occurred between 25 to 30 °C. Brown rice seems to support A. flavus growth and aflatoxin production more than the polished rice.
  20. Al-Qaisi A, Alrosan M, Almajwal AM, Gammoh S, Alu'datt MH, Kubow S, et al.
    J Food Sci, 2024 Feb 05.
    PMID: 38317408 DOI: 10.1111/1750-3841.16946
    The utilization of pea proteins (PPs) is limited due to their relatively low protein digestibility (∼81%) compared to animal-based proteins, such as whey. The present investigation involved the fermentation of PPs at a concentration of 1% (w/v) using 5% (w/v) water kefir for 60 h at 25°C to improve the functional properties of PPs. The results showed a significant (p 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links