Displaying publications 1 - 20 of 273 in total

Abstract:
Sort:
  1. Elkanzi EM, Bee Kheng G
    J Hazard Mater, 2000 Mar 13;73(1):55-62.
    PMID: 10686378
    Hydrogen peroxide and UV radiation have been used in the photochemical degradation of isoprene in aqueous solutions. A kinetic study is carried out taking into account the contribution of the UV radiation reaction and the combined reaction with hydrogen peroxide. An empirical reaction rate expression, which considers the two reactions taking place in parallel, is suggested. Pseudo-first order rate constants are obtained from batch reactor data. As the molar ratio of H(2)O(2):isoprene increases, the rate of reaction increases linearly while the concentration of H(2)O(2) is observed to be nearly constant throughout the reaction; suggesting that the H(2)O(2) acts as a pseudo-catalyst. Nearly complete oxidation of isoprene is achieved. These results indicate that the H(2)O(2)/UV process appears to be a competitive alternative destructive treatment for removing isoprene from water present at low levels.
  2. Chan YM, Agamuthu P, Mahalingam R
    J Hazard Mater, 2000 Oct 02;77(1-3):209-26.
    PMID: 10946129
    Currently, the generated brake lining waste dust, which contains asbestos as its major component, is disposed of into a secure landfill without any additional treatment. As an alternative to this, solidification/stabilization (S/S) disposal of the dust was investigated using Portland cement alone and Portland cement mixed with activated carbon (AC), as the binders. Toxicity Characteristics Leaching Procedure (TCLP) results on the solidified matrix showed that cement was able to immobilize the heavy metals, Ba, Zn, Cr, Pb, Cu and Fe, to within the limits set by the US EPA for TCLP. Addition of AC to the cement reduced the leaching of heavy metals by an additional 4-24% compared to cement alone. The pH of the TCLP leachate extracted from virgin cement, and from dust treated with cement with or without AC was found to increase to 10.9-12.5 as opposed to an initial value of 4.93 for the TCLP extract for the untreated dust. Results of ANS 16.1 (modified) leach protocol revealed that Ba in cement-treated samples showed the highest leach rate, followed by Zn, Pb, Cr, Cu and Fe. The leach rate of heavy metals decreased with progress in time. Cement mixed with AC exhibited similar leach characteristics, however, the leach rate was lower. The linear relationship between the cumulative fraction leached (CFL) and the square root of leaching time in all cement-based samples indicate that a diffusional process is the controlling transport mechanism for the leaching of the heavy metals. The obtained Leachability Indices (L(i)) of 7.6-9.1 and 8.3-9.5 for cement and cement with AC, respectively, were low but exceeded the guidance value of 6, which clearly indicates that all the heavy metals studied are retained well within solid matrices. Cement-based S/S hardening times increased from 30 to 96 h as the dust content increased from 40 to 70 wt.%. The resulting solid matrices exhibited a compressive strength ranging from 1 to 12 MPa, which was well above the specified limit of 414 kPa for such matrices. An economic analysis indicates that the disposal costs for the dust in the only available secure landfill would increase by 40.3% if one were to go for the cement S/S option. Addition of AC to the cement would escalate this by an additional 43.8%. Although the S/S of brake lining dust using cement effectively immobilized the heavy metals of concern, cost considerations may hinder the commercial adaptation of this technique for waste disposal unless new regulatory demands are implemented.
  3. Idris A, Saed K
    J Hazard Mater, 2002 Jul 22;93(2):201-8.
    PMID: 12117466
    Ash produced from a hospital waste incinerator was treated using a high temperature melting process at 1200 degrees C. The quality of the produced slag was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), leaching tests and sequential chemical extraction of metals. The slag contained large amounts of SiO(2,) CaO, Al(2)O(3), Sn, Ni, Cu, Ba and B. XRD analysis revealed a moderate crystal structure for the melted slag and identified the main crystals as quartz (SiO(2)), kaolinite (Al(2)Si(2)O(5)(OH)(4)), albite (NaAlSi(3)O(8)) and gibbsite (Al(OH)(3)). The observed crystal structure assists in preventing the leaching of heavy metals from the slag. Furthermore, the leaching results found the produced slag to comply with disposal limits set by the US EPA. Results from sequential chemical extraction analysis showed that metals in the slag exhibited the strongest preference to be bound to the residual fraction (stable fraction), which is known to have very low leaching characteristics. Melting was found to stabilize heavy metals in hospital waste successfully and therefore it can be an acceptable method for disposal.
  4. Ong SA, Lim PE, Seng CE
    J Hazard Mater, 2003 Oct 31;103(3):263-77.
    PMID: 14573344
    Wastewater treatment systems employing simultaneous adsorption and biodegradation processes have proven to be effective in treating toxic pollutants present in industrial wastewater. The objective of this study is to evaluate the effect of Cu(II) and the efficacy of the powdered activated carbon (PAC) and activated rice husk (ARH) in reducing the toxic effect of Cu(II) on the activated sludge microorganisms. The ARH was prepared by treatment with concentrated nitric acid for 15 h at 60-65 degrees C. The sequencing batch reactor (SBR) systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the ratio of 0.5:3.5:1:0.75:0.25 for a cycle time of 6 h. The Cu(II) and COD removal efficiency were 90 and 85%, respectively, in the SBR system containing 10 mg/l Cu(II) with the addition of 143 mg/l PAC or 1.0 g PAC per cycle. In the case of 715 mg/l ARH or 5.0 g ARH per cycle addition, the Cu(II) and COD removal efficiency were 85 and 92%, respectively. ARH can be used as an alternate adsorbent to PAC in the simultaneous adsorption and biodegradation wastewater treatment process for the removal of Cu(II). The specific oxygen uptake rate (SOUR) and kinetic studies show that the addition of PAC and ARH reduce the toxic effect of Cu(II) on the activated sludge microorganisms.
  5. Nur H, Manan AF, Wei LK, Muhid MN, Hamdan H
    J Hazard Mater, 2005 Jan 14;117(1):35-40.
    PMID: 15621351
    The surfaces of NaY zeolite particles were modified by the alkylsilylation of n-octadecyltrichlorosilane (OTS). Two kinds of modified NaY zeolites were prepared; one with its external surface partially and the other fully covered with alkylsilyl groups. Since the size of OTS is bigger than the pore diameter of NaY, it is attached on the external surface, leaving the internal pore accessible to adsorbate molecules. As a result of alkylsilylation, the adsorption properties of these sorbents were improved. The adsorption properties of these materials were tested by their reaction in a mixture of paraquat and blue dye. The results demonstrate that the alkysilylated NaY materials are capable of simultaneous adsorption of paraquat and blue dye. Paraquat was selectively adsorbed into the internal pore of the zeolite whereas the dye on the externally attached alkylsilyl groups of the sorbent; displaying the unique bimodal amphiphilic character of the alkylsilylated NaY zeolites.
  6. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2005 Feb 14;118(1-3):197-203.
    PMID: 15721544
    Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).
  7. Zainal Z, Hui LK, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I
    J Hazard Mater, 2005 Oct 17;125(1-3):113-20.
    PMID: 15996813
    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at approximately 28 degrees C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis.
  8. Abdullah AZ, Bakar MZ, Bhatia S
    J Hazard Mater, 2006 Feb 28;129(1-3):39-49.
    PMID: 16310938
    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.
  9. Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G
    J Hazard Mater, 2006 Jul 31;135(1-3):378-88.
    PMID: 16431022
    The flocculation performances of nine cationic and anionic polyacrylamides with different molecular weights and different charge densities in the treatment of pulp and paper mill wastewater have been studied. The experiments were carried out in jar tests with the polyacrylamide dosages range of 0.5-15 mg l(-1), rapid mixing at 200 rpm for 2 min, followed by slow mixing at 40 rpm for 15 min and settling time of 30 min. The effectiveness of the polyacrylamides was measured based on the reduction of turbidity, the removal of total suspended solids (TSS) and the reduction of chemical oxygen demand (COD). Cationic polyacrlyamide Organopol 5415 with very high molecular weight and low charge density is found to give the highest flocculation efficiency in the treatment of the paper mill wastewater. It can achieve 95% of turbidity reduction, 98% of TSS removal, 93% of COD reduction and sludge volume index (SVI) of 14 ml g(-1) at the optimum dosage of 5 mg l(-1). SVI values of less than 70 m lg(-1) are found for all polyacrylamide at their respective optimum dosage. Based on the cost evaluation, the use of the polyacrylamides is economically feasible to treat the pulp and paper mill wastewaters. This result suggests that single-polymer system can be used alone in the coagulation-flocculation process due to the efficiency of the polyacrylamide. Sedimentation of the sludge by gravity thickening with settling time of 30 min is possible based on the settling characteristics of the sludge produced by Organopol 5415 that can achieve 91% water recovery and 99% TSS removal after 30 min settling.
  10. Yin CY, Mahmud HB, Shaaban MG
    J Hazard Mater, 2006 Oct 11;137(3):1758-64.
    PMID: 16784809
    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.
  11. Ahmad AA, Hameed BH, Aziz N
    J Hazard Mater, 2007 Mar 6;141(1):70-6.
    PMID: 16887263
    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
  12. Hameed BH, Din AT, Ahmad AL
    J Hazard Mater, 2007 Mar 22;141(3):819-25.
    PMID: 16956720
    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.
  13. Akyil S, Yusof AM
    J Hazard Mater, 2007 Jun 1;144(1-2):564-9.
    PMID: 17141412
    Concentrations of uranium and thorium in seawater, sediment and some marine species taken from along the coastal areas of Malaysia were determined spectrophotometrically. The uranium and thorium concentrations in seawater were found to vary ranging from 1.80 to 4.1 and 0.14 to 0.88 microg/L, respectively. The concentration of uranium in sediment samples was reported to range from 3.00 to 6.60 microg/g while those of thorium were slightly lower ranging from 0.01 to 0.68 microg/g. The uptake of uranium and thorium in marine species was found to be rather low. Similar variations in total alpha activities in samples were also observed with the total alpha activities relatively lower than the beta activities in most samples.
  14. Bhatia S, Othman Z, Ahmad AL
    J Hazard Mater, 2007 Jun 25;145(1-2):120-6.
    PMID: 17141409
    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).
  15. Ahmad AL, Wong SS, Teng TT, Zuhairi A
    J Hazard Mater, 2007 Jun 25;145(1-2):162-8.
    PMID: 17161910
    Coagulation-flocculation is a proven technique for the treatment of high suspended solids wastewater. In this study, the central composite face-centered design (CCFD) and response surface methodology (RSM) have been applied to optimize two most important operating variables: coagulant dosage and pH, in the coagulation-flocculation process of pulp and paper mill wastewater treatment. The treated wastewater with high total suspended solids (TSS) removal, low SVI (sludge volume index) and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. The effect of interactions between coagulant dosage and pH on the TSS removal and SVI are significant, whereas there is no interaction between coagulant dosage and water recovery. Quadratic models have been developed for the response variables, i.e. TSS removal, SVI and water recovery based on the high coefficient of determination (R(2)) value of >0.99 obtained from the analysis of variances (ANOVA). The optimum conditions for coagulant dosage and pH are 1045mgL(-1) and 6.75, respectively, where 99% of TSS removal, SVI of 37mLg(-1) and 82% of water recovery can be obtained.
  16. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
  17. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA
    J Hazard Mater, 2007 Jul 19;146(1-2):30-8.
    PMID: 17188812
    Possible application of a locally isolated environmental isolate, Acinetobacter haemolyticus to remediate Cr(VI) contamination in water system was demonstrated. Cr(VI) reduction by A. haemolyticus seems to favour the lower concentrations (10-30 mg/L). However, incomplete Cr(VI) reduction occurred at 70-100 mg/L Cr(VI). Initial specific reduction rate increased with Cr(VI) concentrations. Cr(VI) reduction was not affected by 1 or 10 mM sodium azide (metabolic inhibitor), 10 mM of PO(4)3-, SO4(2-), SO(3)2-, NO3- or 30 mg/L of Pb(II), Zn(II), Cd(II) ions. However, heat treatment caused significant dropped in Cr(VI) reduction to less than 20% only. A. haemolyticus cells loses its shape and size after exposure to 10 and 50 mg Cr(VI)/L as revealed from TEM examination. The presence of electron-dense particles in the cytoplasmic region of the bacteria suggested deposition of chromium in the cells.
  18. Fakhru'l-Razi A, Molla AH
    J Hazard Mater, 2007 Aug 17;147(1-2):350-6.
    PMID: 17321676
    A promising biological, sustainable, non-hazardous, safe and environmental friendly management and disposal technique of domestic wastewater sludge is global expectation. Fungal entrapped biosolids as a result of prior fungal treated raw wastewater sludge was recycled to evaluate its performance as inoculum for bioseparation/bioconversion of supplemented sludge in view of continuous as well as scale up wastewater sludge treatment. Encouraging results were achieved in bioseparation of suspended solids and in dewaterability/filterability of treated domestic wastewater sludge. Fungal entrapped biosolids offered 98% removal of total suspended solids (TSS) in supplemented sludge treatment at 6-day without nutrient (wheat flour, WF) supply. Consequently, 99% removal of turbidity and 87% removal of chemical oxygen demand (COD) were achieved in supernatant of treated sludge. The lowest value (1.75 x 10(12)m/kg) of specific resistance to filtration (SRF) was observed at 6-day after treatment, which was equivalent to the 70% decrease of SRF. The all results except SRF were not influenced further in treatments accompanied with WF supplementation. The present treatments offered significant (P
  19. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
  20. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA
    J Hazard Mater, 2007 Sep 5;148(1-2):164-71.
    PMID: 17368716
    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L(-1) of Cr(VI) was reduced at a flow rate of 8.0 mL min(-1). The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links