Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
  2. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
  3. Ahmad MS, Cheng CK, Singh S, Ong HR, Abdullah H, Hong CS, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5916-5927.
    PMID: 32331197 DOI: 10.1166/jnn.2020.18549
    Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
  4. Ahmad R, Salina M, Mamat MH, Teh AA, Kara M, Rusop M, et al.
    J Nanosci Nanotechnol, 2012 Oct;12(10):8153-7.
    PMID: 23421193
    This paper addresses the growth of nano-structured MgZnO thin films by sol-gel spin coating method which will be used as a template layer to grow carbon nanotubes. The nano-structured MgZnO films were deposited on platinized (100) silicon substrates. In this work, we focused on the effect of aging and Mg content on the film structure and resistivity. Sols with Mg content of 10, 30 and 50 at.% were subjected to aging times of between 3 to 240 hours. Results from scanning (SEM) and field emission scanning electron (FESEM) microscopes and surface profiler (SP) showed that the sol aging increased the thickness, grain size and surface roughness for aging up to 240 hours. The energy dispersive analysis by X-ray (EDAX) confirmed the element of Mg in the ZnO films. The electrical resistivity also increased with aging time as confirmed by four point probe method. The results suggest that appropriate aging of the sol is important for improving physical quality and electrical performance of MgZnO thin films derived from sol-gel technique.
  5. Ahmed S, Shahid MM, Bakar SA, Arshed N, Basirun WJ, Fouad H
    J Nanosci Nanotechnol, 2020 12 01;20(12):7705-7709.
    PMID: 32711646 DOI: 10.1166/jnn.2020.18570
    Herein, we report the synthesis of SnO, Cu₂O and SnO-Cu₂O mixed oxide thin films on fluorinedoped tin oxide (FTO) substrate by Aerosol-Assisted Chemical Vapour Deposition (AACVD) process using [Cu (dmae)₂(H₂O)] and [Sn (dmae) (OAc)]₂ as molecular precursors for SnO and Cu₂O, respectively at 400 °C. The X-ray diffraction (XRD) pattern can be ascribed to the tetragonal phase of SnO crystals with space group P4 and cubic phase of Cu₂O crystals with space group Pn- 3m/nmm, respectively. The surface morphology characteristics of SnO, Cu₂O and SnO-Cu₂Omixed oxide have been investigated using Field Emission Scanning Electron Microscope (FESEM) which revealed that the SnO was grown homogeneously in cubical shape while Cu₂O possess nano balls shaped morphologies. The UV band gap values of SnO-Cu₂O mixed oxide thin film was found to be 2.6 eV appropriate for photoelectrochemical (PEC) applications. The synthesized material was proposed for PEC applications and has shown enhanced catalytic performance in the presence of light.
  6. Arshad MKM, Adzhri R, Fathil MFM, Gopinath SCB, N M NM
    J Nanosci Nanotechnol, 2018 Aug 01;18(8):5283-5291.
    PMID: 29458578 DOI: 10.1166/jnn.2018.15419
    The development of electrical biosensor towards device miniaturization in order to achieve better sensitivity with enhanced electrical signal has certain limitations especially complexity in fabrication process and costs. In this paper, an alternative technique with minor modification in the device structure is presented for signal amplification by implementing ambipolar conduction in the biosensor itself. We demonstrated the field-effect transistor (FET)-based biosensor coupled back-gate for attaining a higher sensitivity with the detection of lower target abundance. To utilize the coupled back-gate as a pre-amplifier, silicon-on-insulator wafer with thicknesses of top-silicon and buried oxide (BOX) layers of 70 nm and 145 nm, respectively were desired. Titanium dioxide (TiO2) nanomaterial was deposited using sol-gel method on the channel which acts as a transducer. Surface functionalization on TiO2 thin film allowed an effective immobilization of anti-cardiac troponin I antibody to interact cardiac troponin I (cTnI). Binding events at each step was validated by X-ray photoelectron spectroscopy (XPS) analysis. Further, electrical characterization (Id-Vd) confirms the potentiality of FET-based biosensor to detect cTnI (represents acute myocardial infarction disease) with the concentration ranges from 10 μg/ml down to 1 fg/ml. The sensitivity of 459.2 nA (g/ml)-1 and lower detection limit of 1 fg/ml were achieved at Vbg = -5 V and Vd = 5 V. The designed device demonstrates its ability to detect lower level of cTnI with pre-amplified electrical signal by back-gate biasing.
  7. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
  8. Chai YC, Jun HK
    J Nanosci Nanotechnol, 2019 Jun 01;19(6):3505-3510.
    PMID: 30744778 DOI: 10.1166/jnn.2019.16099
    Nanosize semiconductors have been used as active sensitizers for the application of quantum dot-sensitized solar cells (QDSSC). "Green" sensitizers are introduced as an alternative for the toxic Cd and Pb based compounds. In this work, Bi₂S₃ quantum dots (QDs) were fabricated and used as sensitizers in QDSSC. QDs were grown on TiO₂ electrode via solution dipping process. Although the performance of "green" QDSSC is not as high as that of CdS or CdSe based QDSSCs, its performance can be enhanced with post heat treatment. The effect is dependent on the heat treatment temperature profile where gradual increase of sintering temperature is preferred. The effects of post heat treatment on Bi₂S₃ sensitized TiO₂ electrodes are investigated and discussed.
  9. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
  10. Chin LY, Zainal Z, Hussein MZ, Tee TW
    J Nanosci Nanotechnol, 2011 Jun;11(6):4900-9.
    PMID: 21770120
    The fabrication of TiO2 nanotubes (TNT) was carried out by electrochemical anodization of Ti in aqueous electrolyte containing NH4F. The effect of electrolyte pH, applied voltage, fluoride concentration and anodization duration on the formation of TNT was investigated. It was observed that self-organized TNT can be formed by adjusting the electrolyte to pH 2-4 whereby applied voltage of 10-20 V can be performed to produce highly ordered, well-organized TNT. At 20 V, TNT can be fabricated in the concentration range of 0.07 M to 0.20 M NH4F. Higher fluoride concentration leads to etching of Ti surface and reveals the Ti grain boundaries. The prepared TNT films also show an increase in depth and in size with time and the growth of TNT films reach a steady state after 120 minutes. The morphology and geometrical aspect of the TNT would be an important factor influencing the photoelectrochemical response, with higher photocurrent response is generally associated with thicker layer of TNT. Consequently, one can tailor the resulting TNT to desired surface morphologies by simply manipulating the electrochemical parameters for wide applications such as solar energy conversion and photoelectrocatalysis.
  11. Dabagh S, Chaudhary K, Haider Z, Ali J
    J Nanosci Nanotechnol, 2019 Jul 01;19(7):4142-4146.
    PMID: 30764983 DOI: 10.1166/jnn.2019.16331
    Aluminium substituted cobalt-copper Co1-xCuxFe2-xAlxO₄, (x ═ 0.8) nanoparticles are grown and sintered at different temperature in the range 600 to 900 °C. XRD analysis on nanoparticles prepared at sintered temperatures of 700 °C and 800 °C confirms the spinel structure and presence of hematite phase (alpha ferrite) in them. The dielectric behaviour of the prepared nano-particles is investigated. Although crystallinity improved with increase in sintering temperature and there was a dielectric loss at higher probe analyser frequency. The synthesized nanoparticles an average particle size of 20-24 nm while the FTIR absorption in regions of 586-595 cm-1 and 450-460 cm-1 indicated the presence of intrinsic vibrations of the tetrahedral and octahedral complexes respectively. Electrical resistivity as a function of temperature confirms the semiconducting nature of the Cu-Al substituted cobalt ferrite, and is attributed to the hopping mechanism between Fe2+ Fe3+ ions and Co2+ Cu2+, Co2+ Al3+. The lower values of dielectric constants and dielectric losses make Al-Cu doped cobalt ferrite, a potential material for microwave and radio wave absorber applications.
  12. Fayyadh OA, Arifin INA, Khairudin A, Hassan J, Abubakar S, Talib ZA, et al.
    J Nanosci Nanotechnol, 2020 May 01;20(5):3157-3163.
    PMID: 31635660 DOI: 10.1166/jnn.2020.17386
    Indium antimonide nanowires were synthesized by electrochemical deposition using anodic aluminum oxide template in the presence of gold film as conductive layers. Field emission scanning electron microscopy and energy dispersive X-ray spectrometry measurements were carried out to investigate the effect of adhesive insulated tape covered below the conductive layer. Results showed that the anodic aluminum oxide template covered with insulating tapes had better morphology with less presence of overgrown rough film on the topside of the anodic aluminum oxide template and it exhibited a smoother nanowire sidewall as compared to the uncovered ones. Additionally, the unique properties of anodic aluminum oxide were controllable pore diameter with a narrow size distribution at some intervals. It was evident from the energy dispersive X-ray spectrum that the nanowires synthesized from the covered template condition exhibited better InSb composition and stoichiometric ratio compared to the uncovered template condition.
  13. Gaber NN, Darwis Y, Peh KK, Tan YT
    J Nanosci Nanotechnol, 2006 10 20;6(9-10):3095-101.
    PMID: 17048523
    The potential of using poly-(ethylene oxide)-block-distearoyl phosphatidyl-ethanolamine (mPEG-DSPE) polymer to prepare BDP-loaded micelles with high entrapment efficiency and mass median aerodynamic diameter of less than 5 microm demonstrating sustained release properties was evaluated. The result showed that lyophilized BDP-loaded polymeric micelles with entrapment efficiency of more than 96% could be achieved. Entrapment efficiency was affected by both the drug to polymer molar ratio and the amount of drug used. Investigation using FTIR and DSC confirmed that there was no chemical or physical interaction and the drug was molecularly dispersed within the micelles. TEM images showed that the drug-loaded polymeric micelles were spherical in shape with multivesicular morphology. Further analysis by photon correlation spectroscopy indicated that the particle size of the BDP-loaded micelles was about 22 nm in size. In vitro drug release showed a promising sustained release profile over six days following the Higuchi model. The mass median aerodynamic diameter and fine particle fraction were suitable for pulmonary delivery. Moreover, the small amount of deposited drug in the induction port (throat deposition) suggested possible reduction in incidence of oropharyngeal candidiasis, a side effect normally associated with inhaled corticosteroids therapy. The high encapsulation efficiency, comparable inhalation properties, sustained release behavior together with biocompatibility nature of the polymer support the potential of BDP-loaded polymeric micelles as a versatile delivery system to be used in the treatment of asthma and chronic obstructive pulmonary disease.
  14. Gnanamoorthy G, Muthukumaran M, Varun Prasath P, Karthikeyan V, Narayanan V, Sagadevan S, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5426-5432.
    PMID: 32331114 DOI: 10.1166/jnn.2020.17814
    Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O-₂) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.
  15. Hashim Y
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1199-1201.
    PMID: 29448557 DOI: 10.1166/jnn.2018.13956
    This study explores optimization of resistance load (R-Load) of four silicon nanowire transistor (SiNWT)-based static random-access memory (SRAM) cell. Noise margins and inflection voltage of butterfly characteristics with static power consumption of SRAM cell are used as limiting factors in this optimization. Range of R-Load used in this study was 20-1000 KΩ with Vdd = 1 V. Results indicate that optimization depends critically on resistance load value. The optimized range of R-Load is 100-200 KΩ.
  16. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2012 Oct;12(10):7849-52.
    PMID: 23421147
    This paper presents the temperature characteristics of silicon nanowire transistors (SiNWTs) and examines the effect of temperature on transfer characteristics, threshold voltage, I(ON)/I(OFF) ratio, drain-induced barrier lowering (DIBL), and sub-threshold swing (SS). The (MuGFET) simulation tool was used to investigate the temperature characteristics of a transistor. The findings reveal the negative effect of higher working temperature on the use of SiNWTs in electronic circuits, such as digital circuits and amplifiers circuits, because of the lower I(ON)/I(OFF) ratio, higher DIBL, and higher SS at higher temperature. Moreover, the ON state is the optimum condition for using a transistor as a temperature nano-sensor.
  17. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2012 Sep;12(9):7101-4.
    PMID: 23035439
    This paper shows the effect of the dimensions of nanowires on threshold voltage, ON/OFF current ratio, and sub-threshold slope. These parameters are critical factors of the characteristics of silicon nanowire transistors. The MuGFET simulation tool was used to investigate the characteristics of a transistor. Current-voltage characteristics with different dimensions were simulated. Results show that long nanowires with low diameter and oxide thickness tend to have the best transistor characteristics.
  18. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2013 Jan;13(1):242-9.
    PMID: 23646723
    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.
  19. Hossain SM, Mozar FS, Chowdhury EH
    J Nanosci Nanotechnol, 2019 11 01;19(11):6881-6892.
    PMID: 32098646 DOI: 10.1166/jnn.2019.16718
    Inorganic nanoparticles are commonly employed as vectors for delivering drugs into cancer cells while decreasing undesired cytotoxicity in healthy tissues. Carbonate apatite is an attractive nonviral vector that releases drugs at acidic environment inside the cells following endocytosis. However, maintaining the smaller particle size is crucial for enhancing cellular uptake of drugs as well as prolonging their systemic circulation time. We aimed to modify carbonate apatite with citrate for reducing the growth kinetics of carbonate apatite particles and enhancing the cellular uptake of cyclophosphamide via endocytosis. Several concentrations of sodium citrate were used to fabricate citrate-modified carbonate apatite (CMCA) particle complexes in absence or presence of cyclophosphamide. The binding affinity of the drug towards the particles and its cellular uptake were measured by high-performance liquid chromatography (HPLC). The nanoparticles' average size and zeta potential were determined by Malvern Zetasizer. Fourier-transform infrared spectroscopy (FTIR) was performed to justify association of citrate with carbonate apatite. MTT assay was performed to evaluate the cell viability. CMCA exhibited 6% more binding efficiency for cyclophosphamide and promoted fast cellular uptake of cyclophosphamide with enhanced cytotoxicity in MCF-7 cells, compared to unmodified carbonate apatite. Therefore, CMCA nanoparticles have a high potential for intracellular delivery of anti-cancer drugs and demand for further investigated in animal models of cancer.
  20. Hussein MZ, Hashim N, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2009 Mar;9(3):2140-7.
    PMID: 19435093
    Hybridization of beneficial organic guest with inorganic host affords scientists an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications, especially for controlled delivery of beneficial agent and storage. A new layered organic-inorganic nanohybrid material containing an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) in Zn-Al-layered double hydroxide inorganic interlayer was synthesised by direct and indirect methods. Both methods yielded mesoporous-type, phase pure, well-ordered layered nanohybrids with similar basal spacing of 28.5-28.7 angstroms and organic loading of around 54.3%. Compared to the material prepared by direct method, the ion exchanged product inherited more of the host's properties especially the pore structure and the organic moiety is also more easily released. This shows that the method of preparation plays an important role in determining the resulting physicochemical properties, in particular the release property and therefore can be used as a means to tune up the release property of the beneficial agent.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links