Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Charoo NA, Shamsher AA, Lian LY, Abrahamsson B, Cristofoletti R, Groot DW, et al.
    J Pharm Sci, 2014 Feb;103(2):378-91.
    PMID: 24382794 DOI: 10.1002/jps.23817
    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release (IR) solid oral dosage forms containing bisoprolol as the sole active pharmaceutical ingredient (API) are reviewed. Bisoprolol is classified as a Class I API according to the current Biopharmaceutics Classification System (BCS). In addition to the BCS class, its therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions, and reported BE/bioavailability problems are taken into consideration. Qualitative compositions of IR tablet dosage forms of bisoprolol with a marketing authorization (MA) in ICH (International Conference on Harmonisation) countries are tabulated. It was inferred that these tablets had been demonstrated to be bioequivalent to the innovator product. No reports of failure to meet BE standards have been made in the open literature. On the basis of all these pieces of evidence, a biowaiver can currently be recommended for bisoprolol fumarate IR dosage forms if (1) the test product contains only excipients that are well known, and used in normal amounts, for example, those tabulated for products with MA in ICH countries and (2) both the test and comparator dosage form are very rapidly dissolving, or, rapidly dissolving with similarity of the dissolution profiles demonstrated at pH 1.2, 4.5, and 6.8.
  2. Kadir A, Mokhtar MT, Wong TW
    J Pharm Sci, 2013 Dec;102(12):4353-63.
    PMID: 24258282 DOI: 10.1002/jps.23742
    The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca(2+) , and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate-insulin interaction via OH moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer-drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer-insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate-glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier.
  3. Aisha AF, Ismail Z, Abu-Salah KM, Majid AM
    J Pharm Sci, 2012 Feb;101(2):815-25.
    PMID: 22081501 DOI: 10.1002/jps.22806
    α-Mangostin is an oxygenated heterocyclic xanthone with remarkable pharmacological properties, but poor aqueous solubility and low oral bioavailability hinder its therapeutic application. This study sought to improve the compound's solubility and study the mechanism underlying solubility enhancement. Solid dispersions of α-mangostin were prepared in polyvinylpyrrolidone (PVP) by solvent evaporation method and showed substantial enhancement of α-mangostin's solubility from 0.2 ± 0.2 μg/mL to 2743 ± 11 μg/mL. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated interaction between α-mangostin and PVP. Transmission electron microscopy and dynamic light scattering showed self-assembly of round anionic nanomicelles with particle size in the range 99-127 nm. Powder X-ray diffraction indicated conversion of α-mangostin from crystalline into amorphous state, and scanning electron microscopy showed the presence of highly porous powder. Studies using the fluorescent probe pyrene showed that the critical micellar concentration is about 77.4 ± 4 μg/mL. Cellular uptake of nanomicelles was found to be mediated via endocytosis and indicated intracellular delivery of α-mangostin associated with potent cytotoxicity (median inhibitory concentration of 8.9 ± 0.2 μg/mL). Improved solubility, self-assembly of nanomicelles, and intracellular delivery through endocytosis may enhance the pharmacological properties of α-mangostin, particularly antitumor efficacy.
  4. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
  5. Elyagoby A, Layas N, Wong TW
    J Pharm Sci, 2013 Feb;102(2):604-16.
    PMID: 23225084 DOI: 10.1002/jps.23388
    Conventional fluid-bed and immersion film coating of hydrophilic zinc pectinate pellets by hydrophobic ethylcellulose is met with fast drug release. This study explored in situ intracapsular pellet coating for colon-specific delivery of 5-fluorouracil (5-FU). The solid coating powder constituted ethylcellulose and pectin in weight ratios of 11:0 to 2:9. Its weight ratio to pellets varied between 2:3 and 3:2. Pectin was used as excipient of core pellets and coating powder in view of its potential use in colon cancer treatment. Delayed 5-FU release and core pectin dissolution were attainable when the weight ratio of solid coating powder to pellets was kept at 3:2, and weight ratio of ethylcellulose and pectin in coating powder was kept at 8:3 with particle size of ethylcellulose reduced to 22 μm. In situ intracapsular wetting of pectin coat by dissolution medium resulted in the formation of ethylcellulose plug interconnecting with pellets through the binding action of pectin. Less than 25% of drug was released at the upper gastrointestinal tract. The majority of drug was released upon prolonged dissolution and in response to colonic enzyme pectinase, which digested core pellets.
  6. Hanafi A, Nograles N, Abdullah S, Shamsudin MN, Rosli R
    J Pharm Sci, 2013 Feb;102(2):617-26.
    PMID: 23192729 DOI: 10.1002/jps.23389
    Cellulose acetate phthalate (CAP) microcapsules were formulated to deliver plasmid DNA (pDNA) to the intestines. The microcapsules were characterized and were found to have an average diameter of 44.33 ± 30.22 μm, and were observed to be spherical with smooth surface. The method to extract pDNA from CAP was modified to study the release profile of the pDNA. The encapsulated pDNA was found to be stable. Exposure to the acidic and basic pH conditions, which simulates the pH environment in the stomach and the intestines, showed that the release occurred in a stable manner in the former, whereas it was robust in the latter. The loading capacity and encapsulation efficiency of the microcapsules were low but the CAP recovery yield was high which indicates that the microcapsules were efficiently formed but the loading of pDNA can be improved. In vitro transfection study in 293FT cells showed that there was a significant percentage of green-fluorescent-protein-positive cells as a result of efficient transfection from CAP-encapsulated pDNA. Biodistribution studies in BALB/c mice indicate that DNA was released at the stomach and intestinal regions. CAP microcapsules loaded with pDNA, as described in this study, may be useful for potential gene delivery to the intestines for prophylactic or therapeutic measures for gastrointestinal diseases.
  7. Khan N, Craig DQ
    J Pharm Sci, 2004 Dec;93(12):2962-71.
    PMID: 15459945
    Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases.
  8. Hussain Z, Katas H, Amin MC, Kumulosasi E, Sahudin S
    J Pharm Sci, 2013 Mar;102(3):1063-75.
    PMID: 23303620 DOI: 10.1002/jps.23446
    The aim of this study to administer hydrocortisone (HC) percutaneously in the form of polymeric nanoparticles (NPs) to alleviate its transcutaneous absorption, and to derive additional wound-healing benefits of chitosan. HC-loaded NPs had varied particle sizes, zeta potentials, and entrapment efficiencies, when drug-to-polymer mass ratios increased from 1:1 to 1:8. Ex vivo permeation analysis showed that the nanoparticulate formulation of HC significantly reduced corresponding flux [∼24 µg/(cm(2) h)] and permeation coefficient (∼4.8 × 10(-3) cm/h) of HC across the full thickness NC/Nga mouse skin. The nanoparticulate formulation also exhibited a higher epidermal (1610 ± 42 µg/g of skin) and dermal (910 ± 46 µg/g of skin) accumulation of HC than those associated with control groups. An in vivo assessment using an NC/Nga mouse model further revealed that mice treated with the nanoparticulate system efficiently controlled transepidermal water loss [15 ± 2 g/(m(2) h)], erythema intensity (232 ± 12), dermatitis index (mild), and thickness of skin (456 ± 27 µm). Taken together, histopathological examination predicted that the nanoparticulate system showed a proficient anti-inflammatory and antifibrotic activity against atopic dermatitic (AD) lesions. Our results strongly suggest that HC-loaded NPs have promising potential for topical/transdermal delivery of glucocorticoids in the treatment of AD.
  9. Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Buang F, et al.
    J Pharm Sci, 2015 Dec;104(12):4276-4286.
    PMID: 26447747 DOI: 10.1002/jps.24666
    Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations.
  10. Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ
    J Pharm Sci, 2015 Dec;104(12):4217-4222.
    PMID: 26398713 DOI: 10.1002/jps.24652
    Polycaprolactone (PCL) matrices loaded with doxycycline were produced by rapidly cooling suspensions of the drug powder in PCL solution in acetone. Drug loadings of 5%, 10%, and 15% (w/w) of the PCL content were achieved. Exposure of doxycycline powder to matrix processing conditions in the absence of PCL revealed an endothermic peak at 65°C with the main peak at 167°C, suggesting solvatomorph formation. Rapid "burst release" of 24%-32% was measured within 24 h when matrices were immersed in simulated vaginal fluid (SVF) at 37°C, because of the presence of drug at or close to the matrix surface, which is further confirmed by scanning electron microscopy. Gradual release of 66%-76% of the drug content occurred over the following 14 days. SVF containing doxycycline released from drug-loaded PCL matrices retained 81%-90% antimicrobial activity compared with the nonformulated drug. The concentrations of doxycycline predicted to be released into vaginal fluid from a PCL matrix in the form of an intravaginal ring would be sufficient to kill Neisseria gonorrhoea and many other pathogens. These results indicate that PCL may be a suitable polymer for controlled intravaginal delivery of doxycycline for the treatment of sexually transmitted infections.
  11. Dabbagh A, Abdullah BJ, Abdullah H, Hamdi M, Kasim NH
    J Pharm Sci, 2015 Aug;104(8):2414-28.
    PMID: 26073304 DOI: 10.1002/jps.24536
    Nanoparticle-based hyperthermia is an effective therapeutic approach that allows time- and site-specific treatment with minimized off-site effects. The recent advances in materials science have led to design a diversity of thermosensitive nanostructures that exhibit different mechanisms of thermal response to the external stimuli. This article aims to provide an extensive review of the various triggering mechanisms in the nanostructures used as adjuvants to hyperthermia modalities. Understanding the differences between various mechanisms of thermal response in these nanostructures could help researchers in the selection of appropriate materials for each experimental and clinical condition as well as to address the current shortcomings of these mechanisms with improved material design.
  12. Suhaimi H, Ahmad FB, Friberg SE
    J Pharm Sci, 1995 Mar;84(3):376-80.
    PMID: 7616381
    A lamellar liquid crystalline region was identified in a typical skin lotion formulation system composed of a mixture of isostearic acid and triethanolamine (TEA) at 65:35 (w/w), decane, and water (the temperature was controlled at 30 degrees C). The interlayer spacings were determined by a small-angle X-ray diffraction technique. Incorporation of a natural dye, curcumin, resulted in lower interlayer spacings and higher penetration of water into the layered structure. However, the higher penetration of water was not apparent at all compositions of isostearic acid:TEA, decane, and water.
  13. Lajis NH, Noor HM, Khan MN
    J Pharm Sci, 1995 Jan;84(1):126-30.
    PMID: 7714735
    The hydroxide ion-catalyzed hydrolysis of securinine involves the ring opening of the lactone moiety. The rate of hydrolysis is insensitive to the ionic strength. The observed pseudo-first-order rate constants reveal a decrease of approximately 4-fold due to the increase in the MeCN content from 4 to 50% (v/v) in mixed aqueous solvent. The temperature dependence of the rate of hydrolysis follows the Eyring equation, which yields delta H* and delta S* as 11.0 kcal mol-1 and -34.5 cal deg-1 mol-1, respectively. The hydroxyl carboxylate product of the alkaline hydrolysis of securinine is shown to undergo cyclization in acidic medium to yield securinine. The observed pseudo-first-order rate constants for cyclization increase linearly with an increase in [H+]. The change in the content of MeCN from 3.8 to 47.2% (v/v) in mixed aqueous solvents does not show an effect on the rate of the cyclization reaction. The most plausible mechanisms for alkaline hydrolysis and acid cyclization reactions are also discussed.
  14. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
  15. Liew KF, Hanapi NA, Chan KL, Yusof SR, Lee CY
    J Pharm Sci, 2017 02;106(2):502-510.
    PMID: 27855959 DOI: 10.1016/j.xphs.2016.10.006
    Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional Pevalues highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (Po) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The Po value determined supported the in vivo feasibility of the aurone as a CNS-active compound.
  16. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR
    J Pharm Sci, 2021 02;110(2):698-706.
    PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015
    Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
  17. Jeckson TA, Neo YP, Sisinthy SP, Gorain B
    J Pharm Sci, 2021 02;110(2):635-653.
    PMID: 33039441 DOI: 10.1016/j.xphs.2020.10.003
    Increasing incidences of chronic wounds urge the development of effective therapeutic wound treatment. As the conventional wound dressings are found not to comply with all the requirements of an ideal wound dressing, the development of alternative and effective dressings is demanded. Over the past few years, electrospun nanofiber has been recognized as a better system for wound dressing and hence has been studied extensively. Most of the electrospun nanofiber dressings were fabricated as single-layer structure mats. However, this design is less favorable for the effective healing of wounds mainly due to its burst release effect. To address this problem and to simulate the organized skin layer's structure and function, a multilayer structure of wound dressing had been proposed. This design enables a sustained release of the therapeutic agent(s), and more resembles the natural skin extracellular matrix. Multilayer structure is also referred to layer-by-layer (LbL), which has been established as an innovative method of drug incorporation and delivery, combines a high surface area of electrospun nanofibers with the multilayer structure mat. This review focuses on LbL multilayer electrospun nanofiber as a superior strategy in designing an optimal wound dressing.
  18. Tan KX, Danquah MK, Pan S, Yon LS
    J Pharm Sci, 2019 09;108(9):2934-2941.
    PMID: 31002808 DOI: 10.1016/j.xphs.2019.03.037
    Efficient delivery of adequate active ingredients to targeted malignant cells is critical, attributing to recurrent biophysical and biochemical challenges associated with conventional pharmaceutical delivery systems. These challenges include drug leakage, low targeting capability, high systemic cytotoxicity, and poor pharmacokinetics and pharmacodynamics. Targeted delivery system is a promising development to deliver sufficient amounts of drug molecules to target cells in a controlled release pattern mode. Aptameric ligands possess unique affinity targeting capabilities which can be exploited in the design of high pay-load drug formulations to navigate active molecules to the malignant sites. This study focuses on the development of a copolymeric and multifunctional drug-loaded aptamer-conjugated poly(lactide-co-glycolic acid)-polyethylenimine (PLGA-PEI) (DPAP) delivery system, via a layer-by-layer synthesis method, using a water-in-oil-in-water double emulsion approach. The binding characteristics, targeting capability, biophysical properties, encapsulation efficiency, and drug release profile of the DPAP system were investigated under varying conditions of ionic strength, polymer composition and molecular weight (MW), and degree of PEGylation of the synthetic core. Experimental results showed increased drug release rate with increasing buffer ionic strength. DPAP particulate system obtained the highest drug release of 50% at day 9 at 1 M NaCl ionic strength. DPAP formulation, using PLGA 65:35 and PEI MW of ∼800 Da, demonstrated an encapsulation efficiency of 78.93%, and a loading capacity of 0.1605 mg bovine serum albumin per mg PLGA. DPAP (PLGA 65:35, PEI MW∼25 kDa) formulation showed a high release rate with a biphasic release profile. Experimental data depicted a lower targeting power and reduced drug release rate for the PEGylated DPAP formulations. The outcomes from the present study lay the foundation to optimize the performance of DPAP system as an effective synthetic drug carrier for targeted delivery.
  19. Salma H, Melha YM, Sonia L, Hamza H, Salim N
    J Pharm Sci, 2021 06;110(6):2531-2543.
    PMID: 33548245 DOI: 10.1016/j.xphs.2021.01.032
    The purpose of this study was to simultaneously predict the drug release and skin permeation of Piroxicam (PX) topical films based on Chitosan (CTS), Xanthan gum (XG) and its Carboxymethyl derivatives (CMXs) as matrix systems. These films were prepared by the solvent casting method, using Tween 80 (T80) as a permeation enhancer. All of the prepared films were assessed for their physicochemical parameters, their in vitro drug release and ex vivo skin permeation studies. Moreover, deep learning models and machine learning models were applied to predict the drug release and permeation rates. The results indicated that all of the films exhibited good consistency and physicochemical properties. Furthermore, it was noticed that when T80 was used in the optimal formulation (F8) based on CTS-CMX3, a satisfactory drug release pattern was found where 99.97% of PX was released and an amount of 1.18 mg/cm2 was permeated after 48 h. Moreover, Generative Adversarial Network (GAN) efficiently enhanced the performance of deep learning models and DNN was chosen as the best predictive approach with MSE values equal to 0.00098 and 0.00182 for the drug release and permeation kinetics, respectively. DNN precisely predicted PX dissolution profiles with f2 values equal to 99.99 for all the formulations.
  20. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    J Pharm Sci, 2021 04;110(4):1761-1778.
    PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021
    Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87  cm h-1 × 103) and flux (31.43  μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51  μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88  μg mL-1 and 1 h, and 2.52 ± 0.38  μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links