Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Zhang T, Dang M, Zhang W, Lin X
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111705.
    PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705
    The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
  2. Teh SJ, Yeoh SL, Lee KM, Lai CW, Abdul Hamid SB, Thong KL
    PMID: 27203568 DOI: 10.1016/j.jphotobiol.2016.05.013
    The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.
  3. Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, et al.
    J. Photochem. Photobiol. B, Biol., 2016 Sep;162:386-94.
    PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049
    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
  4. Suardi N, Sodipo BK, Mustafa MZ, Ali Z
    J. Photochem. Photobiol. B, Biol., 2016 Jul 28;162:703-706.
    PMID: 27508880 DOI: 10.1016/j.jphotobiol.2016.07.041
    In this work we present influence of visible laser light on ATP level and viability of anaemic red blood cell (RBC). The visible laser lights used in this work are 460nm and 532nm. The responses of ATP level in anaemic and normal RBC before and after laser irradiation at different exposure time (30, 40, 50 and 60s) were observed. Three aliquots were prepared from the ethylenediaminetetraacetic acid (EDTA) blood sample. One served as a control (untreated) and another two were irradiated with 460nm and 560nm lasers. Packed RBC was prepared to study ATP level in the RBC using CellTiter-GloLuminescent cell Viability Assay kit. The assay generates a glow type signal produced by luciferase reaction, which is proportional to the amount of ATP present in RBCs. Paired t-test were done to analyse ATP level before and after laser irradiation. The results revealed laser irradiation improve level of ATP in anaemic RBC. Effect of laser light on anaemic RBCs were significant over different exposure time for both 460nm (p=0.000) and 532nm (p=0.003). The result of ATP level is further used as marker for RBC viability. The influence of ATP level and viability were studied. Optical densities obtained from the data were used to determine cell viability of the samples. Results showed that laser irradiation increased viability of anaemic RBC compared to normal RBC.
  5. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
  6. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Aug;197:111531.
    PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531
    Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
  7. Quek JA, Lam SM, Sin JC, Mohamed AR
    PMID: 30099271 DOI: 10.1016/j.jphotobiol.2018.07.030
    Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.
  8. Qiang S, Alsaeedi HA, Yuhong C, Yang H, Tong L, Kumar S, et al.
    J. Photochem. Photobiol. B, Biol., 2018 Jun;183:127-132.
    PMID: 29704860 DOI: 10.1016/j.jphotobiol.2018.04.003
    BACKGROUND: Retinal degeneration is a condition ensued by various ocular disorders such as artery occlusion, diabetic retinopathy, retrolental fibroplasia and retinitis pigmentosa which cause abnormal loss of photoreceptor cells and lead to eventual vision impairment. No efficient treatment has yet been found, however, the use of stem cell therapy such as bone marrow and embryonic stem cells has opened a new treatment modality for retinal degenerative diseases. The major goal of this study is to analyze the potential of endothelial progenitor cells derived from bone marrow to differentiate into retinal neural cells for regenerative medicine purposes.

    METHODS: In this study, endothelial progenitor cells were induced in-vitro with photoreceptor growth factor (taurine) for 21 days. Subsequently, the morphology and gene expression of CRX and RHO of the photoreceptors-induced EPCs were examined through immunostaining assay.

    FINDINGS: The results indicated that the induced endothelial progenitor cells demonstrated positive gene expression of CRX and RHO. Our findings suggested that EPC cells may have a high advantage in cell replacement therapy for treating eye disease, in addition to other neural diseases, and may be a suitable cell source in regenerative medicine for eye disorders.

  9. Ong CY, Ling SK, Ali RM, Chee CF, Samah ZA, Ho AS, et al.
    J. Photochem. Photobiol. B, Biol., 2009 Sep 4;96(3):216-22.
    PMID: 19647445 DOI: 10.1016/j.jphotobiol.2009.06.009
    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures. Our results suggest that the main photosensitisers from terrestrial plants are likely based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in minor amounts or are not as active as those with the cyclic tetrapyrrole structure.
  10. Nanjundan N, Selvakumar P, Narayanasamy R, Haque RA, Velmurugan K, Nandhakumar R, et al.
    J. Photochem. Photobiol. B, Biol., 2014 Dec;141:176-85.
    PMID: 25463665 DOI: 10.1016/j.jphotobiol.2014.10.009
    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations.
  11. Moy FM
    J. Photochem. Photobiol. B, Biol., 2011 Sep 02;104(3):444-8.
    PMID: 21636288 DOI: 10.1016/j.jphotobiol.2011.05.002
    Vitamin D status is influenced by sun exposure, geographic latitude, daily outdoor activities, body surface exposed to sunlight and dietary intakes. Malaysia, is sunny all year round. However, the vitamin D status of this population especially among the healthy and free living adults is not known. Therefore a study of vitamin D status and associated factors was initiated among an existing Malay cohort in Kuala Lumpur. A total of 380 subjects were sampled to have their vitamin D status assessed using 25-hydroxyvitamin D (25(OH)D). A short questionnaire enquiring socio-demographic characteristics, exposure to sunlight and clothing style was administered. Their mean age was 48.5±5.2years and the mean 25(OH)D for males and females were 56.2±18.9nmol/L and 36.2±13.4nmol/L respectively. There were significant positive correlation for sun exposure score (r=0.27, p<0.001) and negative correlation for sun protection score (r=-0.41, p<0.001) with 25(OH)D levels. In the logistic regression model, females (OR=2.93; 95% CI: 1.17, 7.31), BMI (1.1; 1.03, 1.20) and sun exposure score (0.998; 0.996, 0.999) were significantly associated with vitamin D status as represented by 25(OH)D levels. Our findings show that obesity, lifestyle behaviours and clothing style are directly associated with our participants especially females' low vitamin D status.
  12. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
  13. Koh AE, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Jul;196:111514.
    PMID: 31154277 DOI: 10.1016/j.jphotobiol.2019.111514
    Retinal disorders account for a large proportion of ocular disorders that can lead to visual impairment or blindness, and yet our limited knowledge in the pathogenesis and choice of appropriate animal models for new treatment modalities may contribute to ineffective therapies. Although genetic in vivo models are favored, the variable expressivity and penetrance of these heterogeneous disorders can cause difficulties in assessing potential treatments against retinal degeneration. Hence, an attractive alternative is to develop a chemically-induced model that is both cost-friendly and standardizable. Sodium iodate is an oxidative chemical that is used to simulate late stage retinitis pigmentosa and age-related macular degeneration. In this study, retinal degeneration was induced through systemic administration of sodium iodate (NaIO3) at varying doses up to 80 mg/kg in Sprague-Dawley rats. An analysis on the visual response of the rats by electroretinography (ERG) showed a decrease in photoreceptor function with NaIO3 administration at a dose of 40 mg/kg or greater. The results correlated with the TUNEL assay, which revealed signs of DNA damage throughout the retina. Histomorphological analysis also revealed extensive structural lesions throughout the outer retina and parts of the inner retina. Our results provided a detailed view of NaIO3-induced retinal degeneration, and showed that the administration of 40 mg/kg NaIO3 was sufficient to generate disturbances in retinal function. The pathological findings in this model reveal a degenerating retina, and can be further utilized to develop effective therapies for RPE, photoreceptor, and bipolar cell regeneration.
  14. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
  15. Jukapli NM, Bagheri S
    J. Photochem. Photobiol. B, Biol., 2016 Oct;163:421-30.
    PMID: 27639172 DOI: 10.1016/j.jphotobiol.2016.08.046
    This review provides a background, fundamental and advanced application of titania nanoparticles (TiO2) on the disinfection and killing of cancer cell through photocatalytic chemistry. It starts with the characteristic properties focused on the surface, light sensitivity, crystallinity and toxicology of TiO2 as a photocatalyst. Consequently, outline and design of photocatalytic reactor has been figured out based on the target organisms, including bacteria, viruses, fungi and cancer cells. Despite a large number of studies undertaken, limited selectivity and efficacy of TiO2 photocatalyst are still widely accepted problems. An ideal TiO2 photocatalyst should have the combined properties of highly stable reactive oxygen species yield and a greater degree of selectivity towards cancerous cell without damaging the healthy tissues. Hybridization of TiO2 with metal, metal oxide and carbon nano materials significantly improved both of stability and selectivity of TiO2, whilst maintaining its high Photodynamic reactivity.
  16. Hosseinzadeh M, Mohamad J, Khalilzadeh MA, Zardoost MR, Haak J, Rajabi M
    J. Photochem. Photobiol. B, Biol., 2013 Nov 5;128:85-91.
    PMID: 24077497 DOI: 10.1016/j.jphotobiol.2013.08.002
    The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
  17. Hosseini M, Fazelian N, Fakhri A, Kamyab H, Yadav KK, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 May;194:128-134.
    PMID: 30953914 DOI: 10.1016/j.jphotobiol.2019.03.016
    NiS-SiO2 and Cr2S3-TiO2 synthesized by Ultrasound-Microwave method was tested for the photo-degradation of methyl red as azo dye under ultraviolet (UV) light. The structure and morphology of the synthesized materials were examined through scanning electron microscopy, X-ray diffraction and photoelectron spectroscopy, energy-dispersive spectroscopy, dynamic light scattering and the band gap energy differences were determined through diffuse reflectance spectroscopy (DRS). The crystallite size and band gap values of SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were obtained from XRD and UV-vis DRS analysis and found insignificant 44.22, 54.11, and 57.11 nm, and 8.9, 3.2, 3.0, 2.7 eV, respectively. The NiS-SiO2 and Cr2S3-TiO2 nanocomposites exhibited good stability and catalytic performance in the azo dye degradation; the composite provides a complete degradation after 50 min under UV irradiation. The effects of different quencher compounds on the Methyl red dye degradation were also investigated. The result for this experiment shows the system without the quencher was highly degradation of Methyl red. The antibacterial influence of the SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were studied versus two species bacteria. The antifungal performance of this nanoparticle was analyzed versus two species fungi as the C. albicans and P. funiculosum. Biological data demonstrated that the prepared catalyst has great bactericidal and fungicidal properties.
  18. Hariharan D, Thangamuniyandi P, Jegatha Christy A, Vasantharaja R, Selvakumar P, Sagadevan S, et al.
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111636.
    PMID: 31739259 DOI: 10.1016/j.jphotobiol.2019.111636
    Titanium dioxide (TiO2) nanoparticles (NPs) have been doped with varying amounts (0.005, 0.010 and 0.015 M) of silver nanoparticles (Ag NPs) using hydrothermal method. Further, in this work, a green approach was followed for the formation of Ag@TiO2 NPs using Aloe vera gel as a capping and reducing agent. The structural property confirmed the presence of anatase phase TiO2. Increased peak intensity was observed while increasing the Ag concentration. Further, the morphological and optical properties have been studied, which confirmed the effective photocatalytic behavior of the prepared Ag@TiO2 NPs. The photocatalytic performance of Ag@TiO2 has been considered for the degradation of picric acid in the visible light region. The concentration at 0.010 M of the prepared Ag@TiO2 has achieved higher photocatalytic performance within 50 min, which could be attributed to its morphological behavior. Similarly, anticancer activity against lung cancer cell lines (A549) was also determined. The Ag@TiO2 NPs generated a large quantity of reactive oxygen species (ROS), resulting in complete cancer cell growth suppression after their systemic in vitro administration. Ag@TiO2 NPs was adsorbed visible light that leads to an enhanced anticancer sensitivity by killing and inhibiting cancer cell reproduction through cell viability assay test. It was clear that 0.015 M of Ag@TiO2 NPs were highly effective against human lung cancer cell lines and showed increased production of ROS in cancer cell lines due to the medicinal behavior of the Aloe vera gel.
  19. Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Oct;199:111627.
    PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627
    Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
  20. Faizul FM, Abdul Kadir H, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2008 Jan 30;90(1):1-7.
    PMID: 18024146
    The interaction between bromocresol purple (BCP) and bovine serum albumin (BSA)/porcine serum albumin (PSA) was investigated both in the absence and presence of bilirubin (BR) using absorption/absorption difference spectroscopy. A significant red shift in the absorption maxima of BCP accompanied by a decrease in absorbance was indicative of BCP binding to albumin. The titration of BSA and PSA with BCP using absorption difference spectroscopy and analysis of results by Benesi-Hildebrand equation yielded the values of association constant, K as 9.9+/-0.9x10(4)Lmol(-1) and 4.1+/-0.3x10(4)Lmol(-1) for BSA and PSA, respectively. The differential extinction coefficient (Deltaepsilon) of 34,484M(-1)cm(-1) at 615nm and 41,870M(-1)cm(-1) at 619nm were estimated for BSA and PSA, respectively. Decrease in (DeltaAbs.)(615nm) of BCP-BSA complex with the increase in ionic strength suggested the role of hydrophobic interactions in the binding phenomenon. A significant blue shift in the absorption maxima and change in (DeltaAbs)(lambdamax) values of BR-albumin complexes upon addition of increasing concentrations of BCP revealed the BR displacing action of BCP on albumin molecule.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links