Displaying publications 1 - 20 of 132 in total

Abstract:
Sort:
  1. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

  2. Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W
    J Sci Food Agric, 2024 Jan 29.
    PMID: 38284624 DOI: 10.1002/jsfa.13338
    BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO).

    RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO.

    CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.

  3. Ramlan NAFM, Mohamad Azman E, Muhammad K, Jusoh AZ, Johari NA, Yusof YA, et al.
    J Sci Food Agric, 2024 Feb;104(3):1756-1767.
    PMID: 37862235 DOI: 10.1002/jsfa.13067
    BACKGROUND: The nutritional composition of stingless bee honey (SBH) can be affected by different climates and soil composition across different geographical areas. However, the range of attributes set for a honey quality standard should be inclusive. This study analysed the sugar profile's physiochemical properties, including quantifying the rare sugar trehalulose, organic acid and mineral composition of SBH collected from inland, and west and east coasts of Peninsular Malaysia. Forty-three SBH (Heterotrigona itama) samples were collected and labelled as <20 and <40 West Coast (<20WC, <40WC), <20 and <40 East Coast (<20EC, <40EC) and Inland, according to their distance from the coasts.

    RESULTS: The moisture, pH and sugar composition of all SBH samples adhered to the Malaysian Kelulut Honey Standard (MS2683:2017) but not to the International Codex Standard (CODEX) for honey. Trehalulose presence in all samples, regardless of geographical area, was predominant alongside fructose and glucose. Only hydroxymethylfurfural (HMF) content and electrical conductivity (EC) results complied with both standards. The principal component analysis biplot showed that the discrimination of SBH according to the five different areas was not feasible, indicating sample homogeneity.

    CONCLUSION: The physicochemical evaluation of SBH from Peninsular Malaysia shows mainly homogeneous attributes of samples across geographical locations. These findings demonstrated that the current MS2683:2017 is relevant and accommodates all SBH of H. itama species produced in Peninsular Malaysia. Furthermore, the trehalulose range calculated in this study can be implemented as a new benchmark for the indicator of SBH honey quality standard by national and international food standard committees. © 2023 Society of Chemical Industry.

  4. Ye J, Hua X, Shao X, Yang R
    J Sci Food Agric, 2023 Nov 23.
    PMID: 37997448 DOI: 10.1002/jsfa.13155
    BACKGROUND: Developing the stable and healthy emulsion-based food is in accord with the needs of people for health. In the present study, acidification at pH 3.0 of peanut polysaccharide (APPSI) was employed to regulate its conformation and further improve its advantages in preparing oil-in-water emulsion.

    RESULTS: The results indicated that acidification induced conversion of PPSI aggregates into linear chains. Increasing concentration promoted formation of cross-linked network structure shown in transmission electron microscopy images. Consequently, the viscosity, yield stress, storage modulus and flow activation energy significantly increased, further fabricating gel structure. Moreover, aggregation behavior suggested that more exposed proteins were involved in gel structure, thereby forming many hydrophobic cores as verified by fluorescence spectroscopy of pyrene. Afterwards, emulsion characteristics indicated that APPSI produced strong and thick steric hindrance around oil droplets and the coil-like interweaved chains locked the continuous phase, bringing strong elasticity and resistance to stress and creaming. Meanwhile, the lower fatty acid in APPSI-emulsion was released after simulated gastrointestinal digestion, mainly as a result of the high retention ratio of emulsion droplets. Furthermore, the elastic and viscous Lissajous curves suggested that the structure strength of APPSI-emulsion was similar to that of the salad dressing within the strain 53.22%.

    CONCLUSION: The conformation of PPSI after acidification at pH 3.0 was suitable for preparing the stable emulsion. The obtained emulsion could resist digestion and maintain a strong structure, comprising a cholesterol-free and low-fat salad dressing substitute. © 2023 Society of Chemical Industry.

  5. Madani B, Mirshekari A, Yahia E
    J Sci Food Agric, 2016 Jul;96(9):2963-8.
    PMID: 26374618 DOI: 10.1002/jsfa.7462
    BACKGROUND: There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects.

    RESULTS: Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage.

    CONCLUSION: Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry.

  6. Li X, Nian BB, Tan CP, Liu YF, Xu YJ
    J Sci Food Agric, 2021 Nov 17.
    PMID: 34786719 DOI: 10.1002/jsfa.11659
    BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined.

    RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC  0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1.

    CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.

  7. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  8. Sim EY, Wu TY
    J Sci Food Agric, 2010 Oct;90(13):2153-62.
    PMID: 20718020 DOI: 10.1002/jsfa.4127
    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW.
  9. Ridzuan R, Rafii MY, Mohammad Yusoff M, Ismail SI, Miah G, Usman M
    J Sci Food Agric, 2019 Jan 15;99(1):269-280.
    PMID: 29851100 DOI: 10.1002/jsfa.9169
    BACKGROUND: Assessment of the different desirable characters among chili genotypes has expanded the effective selection for crop improvement. Identification of genetically superior parents is important in assortment of the best parents to develop new chili hybrids.

    RESULTS: This study was done to assess the hereditary assorted variety of selected genotypes of Capsicum annuum based on their morphophysiological and yield traits in two planting seasons. The biochemical properties, capsaicinoid content (capsaicin and dihydrocapsaicin), total phenolics content and antioxidant action determination of unripe and ripe chili pepper fruits were carried out in dry fruits. AVPP9813 and Kulai 907 were observed to have high fruit yields, with 541.39 and 502.64 g per plant, respectively. The most increased genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were shown by the fruit number per plant (49.71% and 66.04%, respectively). High heritability was observed in yield characters viz-à-viz fruit weight, length and girth and indicated high genetic advance. Eight groups were obtained from the cluster analysis. For the biochemical analysis, the capsaicinoid content and total phenolic content were high in Chili Bangi 3 at unripe and ripe fruit stages, while for antioxidant activity SDP203 was the highest in ripe dry fruit.

    CONCLUSION: Higher GCV and PCV, combined with moderate to high heritability and high hereditary progress, were seen in number of fruit per plant, fruit yield per plant and fruit weight per fruit. These findings are beneficial for chili pepper breeders to select desirable quantitative characters in C. annuum in their breeding program. © 2018 Society of Chemical Industry.

  10. Onwude DI, Hashim N, Chen G, Putranto A, Udoenoh NR
    J Sci Food Agric, 2021 Jan 30;101(2):398-413.
    PMID: 32627847 DOI: 10.1002/jsfa.10649
    BACKGROUND: Combined infrared (CIR) and convective drying is a promising technology in dehydrating heat-sensitive foods, such as fruits and vegetables. This novel thermal drying method, which involves the application of infrared energy and hot air during a drying process, can drastically enhance energy efficiency and improve overall product quality at the end of the process. Understanding the dynamics of what goes on inside the product during drying is important for further development, optimization, and upscaling of the drying method. In this study, a multiphase porous media model considering liquid water, gases, and solid matrix was developed for the CIR and hot-air drying (HAD) of sweet potato slices in order to capture the relevant physics and obtain an in-depth insight on the drying process. The model was simulated using Matlab with user-friendly graphical user interface for easy coupling and faster computational time.

    RESULTS: The gas pressure for CIR-HAD was higher centrally and decreased gradually towards the surface of the product. This implies that drying force is stronger at the product core than at the product surface. A phase change from liquid water to vapour occurs almost immediately after the start of the drying process for CIR-HAD. The evaporation rate, as expected, was observed to increase with increased drying time. Evaporation during CIR-HAD increased with increasing distance from the centreline of the sample surface. The simulation results of water and vapour flux revealed that moisture transport around the surfaces and sides of the sample is as a result of capillary diffusion, binary diffusion, and gas pressure in both the vertical and horizontal directions. The nonuniform dominant infrared heating caused the heterogeneous distribution of product temperature. These results suggest that CIR-HAD of food occurs in a non-uniform manner with high vapour and water concentration gradient between the product core and the surface.

    CONCLUSIONS: This study provides in-depth insight into the physics and phase changes of food during CIR-HAD. The multiphase model has the advantage that phase change and impact of CIR-HAD operating parameters can be swiftly quantified. Such a modelling approach is thereby significant for further development and process optimization of CIR-HAD towards industrial upscaling. © 2020 Society of Chemical Industry.

  11. Taer E, Yanti N, Padang E, Apriwandi A, Zulkarnain Z, Haryanti NH, et al.
    J Sci Food Agric, 2023 Dec;103(15):7411-7423.
    PMID: 37431642 DOI: 10.1002/jsfa.12846
    BACKGROUND: Porous carbon electrode (PCE) is identified as a highly suitable electrode material for commercial application due to its production process, which is characterized by simplicity, cost-effectiveness and environmental friendliness. PCE was synthesized using torch ginger (Etlingera elatior (Jack) R.M. Smith) leaves as the base material. The leaves were treated with different concentrations of ZnCl2 , resulting in a supercapacitor cell electrode with unique honeycomb-like three-dimensional (3D) morphological pore structure. This PCE comprises nanofibers from lignin content and volatile compounds from aromatic biomass waste.

    RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.

    CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.

  12. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

  13. Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK
    J Sci Food Agric, 2023 Apr;103(6):3146-3156.
    PMID: 36426592 DOI: 10.1002/jsfa.12355
    BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus.

    RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P 

  14. Mirhosseini H, Tan CP
    J Sci Food Agric, 2010 Jun;90(8):1308-16.
    PMID: 20474048 DOI: 10.1002/jsfa.3928
    The constituents in a food emulsion interact with each other, either physically or chemically, determining the overall physico-chemical and organoleptic properties of the final product. Thus, the main objective of present study was to investigate the effect of emulsion components on beverage emulsion properties.
  15. Khor YP, Sim BI, Abas F, Lai OM, Wang Y, Nehdi IA, et al.
    J Sci Food Agric, 2019 Dec;99(15):6989-6997.
    PMID: 31414493 DOI: 10.1002/jsfa.9989
    BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil.

    RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P 

  16. Tan PY, Tan TB, Chang HW, Mwangi WW, Tey BT, Chan ES, et al.
    J Sci Food Agric, 2021 Nov;101(14):5963-5971.
    PMID: 33840091 DOI: 10.1002/jsfa.11249
    BACKGROUND: Throughout the past decade, Pickering emulsion has been increasingly utilized for the encapsulation of bioactive compounds due to its high stability and biocompatibility. In the present work, palm tocotrienols were initially encapsulated in a calcium carbonate Pickering emulsion, which was then subjected to alginate gelation and subsequent chitosan coating. The effects of wall material (alginate and chitosan) concentrations, gelation pH and time, and chitosan coating time on the encapsulation efficiency of palm tocotrienols were explored.

    RESULTS: Our findings revealed that uncoated alginate microcapsules ruptured upon drying and exhibited low encapsulation efficiency (13.81 ± 2.76%). However, the addition of chitosan successfully provided a more complex and rigid external wall structure to enhance the stability of the microcapsules. By prolonging the crosslinking time from 5 to 30 min and increasing the chitosan concentration from 0.1% to 0.5%, the oil encapsulation efficiency was increased by 28%. Under the right gelation pH (pH 4), the extension of gelation time from 1 to 12 h resulted in an increase in alginate-Ca2+ crosslinkings, thus strengthening the microcapsules.

    CONCLUSION: With the optimum formulation and process parameters, a high encapsulation efficiency (81.49 ± 1.75%) with an elevated oil loading efficiency (63.58 ± 2.96%) were achieved. The final product is biocompatible and can potentially be used for the delivery of palm tocotrienols. © 2021 Society of Chemical Industry.

  17. Banu M, Krishnamurthy KS, Srinivasan V, Kandiannan K, Surendran U
    J Sci Food Agric, 2024 Feb 22.
    PMID: 38385763 DOI: 10.1002/jsfa.13299
    BACKGROUND: Turmeric cultivation primarily thrives in India, followed by Bangladesh, Cambodia, Thailand, China, Malaysia, Indonesia and the Philippines. India leads globally in both area and production of turmeric. Despite this, there is a recognized gap in research regarding the impact of climate change on site suitability of turmeric. The primary objective of the present study was to evaluate both the present and future suitability of turmeric cultivation within the humid tropical region of Kerala, India, by employing advanced geospatial techniques. The research utilized meteorological data from the Indian Meteorological Department for the period of 1986-2020 as historical data and projected future data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Four climatic scenarios of shared socioeconomic pathway (SSP) from the Intergovernmental Panel on Climate Change AR6 model of MIROC6 for the year 2050 (SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5) were used.

    RESULTS: The results showed that suitable area for turmeric cultivation is declining in future scenario and this decline can be primarily attributed to fluctuations in temperature and an anticipated increase in rainfall in the year 2050. Notable changes in the spatial distribution of suitable areas over time were observed through the application of geographic information system (GIS) techniques. Importantly, as per the suitability criteria provided by ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), all the districts in Kerala exhibited moderately suitable conditions for turmeric cultivation. With the GIS tools, the study identified highly suitable, moderately suitable, marginally suitable and not suitable areas of turmeric cultivation in Kerala. Presently 28% of area falls under highly suitable, 41% of area falls under moderately suitable and 11% falls under not suitable for turmeric cultivation. However, considering the projected scenarios for 2050 under the SSP framework, there will be a significant decrease in highly suitable area by 19% under SSP 5-8.5. This reduction in area will have an impact on the productivity of the crop as a result of changes in temperature and rainfall patterns.

    CONCLUSION: The outcome of the present research suggests that the state of Kerala needs to implement suitable climate change adaptation and management strategies for sustaining the turmeric cultivation. Additionally, the present study includes a discussion on potential management strategies to address the challenges posed by changing climatic conditions for optimizing turmeric production in the region. © 2024 Society of Chemical Industry.

  18. Liu Q, Wu TY, Pu L, Sun J
    J Sci Food Agric, 2021 Oct 09.
    PMID: 34626124 DOI: 10.1002/jsfa.11579
    BACKGROUND: Study of chemical fertilization intensity (FI) and efficiency can provide basal data for the decision-making of food production and environmental impact assessment of fertilization. This research aimed to compare trends of the FI and efficiency during 1961-2018 in developed and developing countries with a simple method.

    RESULTS: The FI in China increased rapidly from about 5 kg ha-1 in 1961 to the highest value of 282 kg ha-1 in 2014, then decreased to about 231 kg ha-1 in 2018. Although the fertilizer allocation efficiency (FAE) showed a slight downward trend, slight upward trend was observed for the fertilizer integrated efficiency (FIE). FIs in India, Iran and Turkey continuously rose from5 kg ha-1 in 1961to 116, 49(148 in 2006),120kg ha-1 in 2018, respectively, while FAEs showed a significant fluctuation around horizontal direction or downward trends and their FIEs showed a slight fluctuation downward. FIs of Britain, Germany and France except USA, increased rapidly from about 200-400 kg ha-1 in 1960s to peaks of 430-530 kg ha-1 in 1980s, then dropped to 150-340 kg ha-1 around 2010, and then up to current level of 200-350 kg ha-1 , while FAEs and FIEs increased rapidly.

    CONCLUSION: France and Germany were found to have moderate chemical fertilizer input and the highest FIE. Thus, their experiences of ecological agricultures in both countries could provide good examples for the developing countries to follow. In short, models of FAE and FIE were easier way to reflect the fertilizer efficiencies in developed and developing countries. This article is protected by copyright. All rights reserved.

  19. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Sci Food Agric, 2016 Jun;96(8):2851-60.
    PMID: 26350493 DOI: 10.1002/jsfa.7454
    Postharvest treatments of fruits using techniques such as ultraviolet-C have been linked with maintenance of the fruit quality as well as shelf-life extension. However, the effects of this treatment on the quality of fruits on a proteomic level remain unclear. This study was conducted in order to understand the response of mango fruit to postharvest UV-C irradiation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links