Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
  2. Fu JYL, Chong YM, Sam IC, Chan YF
    J Virol Methods, 2022 Mar;301:114462.
    PMID: 35026305 DOI: 10.1016/j.jviromet.2022.114462
    Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.
  3. Rizvi A, Hussain N, Anjum AA, Ahmed N, Naeem A, Khan M, et al.
    J Virol Methods, 2022 Feb;300:114379.
    PMID: 34826516 DOI: 10.1016/j.jviromet.2021.114379
    Foot-and-mouth disease (FMD) is a highly infectious disease of cattle and other cloven-hoofed animals, causing huge economic losses annually worldwide. This disease is endemic in Pakistan where the serotypes of the foot-and-mouth disease virus (FMDV) are A, O and ASIA-1. At present, trivalent FMDV vaccines are being used to prevent FMD but the current production process is laborious and is unable to fulfill the needs of the meat and dairy industries. To meet the vaccine needs of Pakistan, the conventional method of using adherent cell lines to produce the vaccine could be replaced by suspension cell cultures which produce higher yields in less time and less volume. Therefore, the aim of this study was to investigate and optimize some of the factors that affect viable cell density and subsequent virus yield. The relationship between the yield of the 146S fraction and the TCID50 of the virus preparations obtained was also evaluated as a mean to control and check the quality of the vaccine product. The results provided optimized conditions for vaccine production using cell suspensions and showed that there was a linear relationship between TCID50 and 146S fraction yield. Either TCID50 or the 146S fraction yield, or both could be used as parameters for quality monitoring during vaccine production. Using TCID50 reduced the number of steps involved in virus production while measuring 146S fraction yield was useful for quality control. However, more studies are required to evaluate the relative effectiveness of vaccines produced by virus cultures using either TCID50 or 146S fraction as quality monitoring tools.
  4. Yeong MY, Cheow PS, Abdullah S, Song AA, Lei-Rossmann J, Tan TK, et al.
    J Virol Methods, 2021 05;291:114099.
    PMID: 33592218 DOI: 10.1016/j.jviromet.2021.114099
    The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
  5. Lim PY, Cardosa MJ
    J Virol Methods, 2019 08;270:113-119.
    PMID: 31100287 DOI: 10.1016/j.jviromet.2019.05.005
    The goal of this paper was to develop a sandwich ELISA that can detect intact human enterovirus A71 (EV-A71) virus-like particles (VLPs) in vaccines. This assay specifically detected EV-A71 viruses from different sub-genogroups as well as EV-A71 VLPs, and treatment of VLPs with high heat and low pH reduced or completely abolished detection of the VLPs suggesting that the ELISA detected assembled particles. Using a purified VLP as a reference standard, a quantitative sandwich ELISA (Q-ELISA) was established which was used to monitor the yield and purity of the VLPs during manufacturing. Coupled with immunogenicity studies, the Q-ELISA was used to evaluate the performance of the VLPs and formalin-inactivated EV-A71 vaccine. This assay has the potential to play an important role in the development of an efficient process to produce and purify the VLPs and in examining the quality of EV-A71 vaccines.
  6. Etemadi MR, Jalilian FA, Othman N, Lye MS, Ansari S, Yubbu P, et al.
    J Virol Methods, 2019 07;269:1-6.
    PMID: 30910688 DOI: 10.1016/j.jviromet.2019.03.013
    BACKGROUND: The role of respiratory viruses as the major cause of acute lower respiratory tract infections (ALRTIs) in children is becoming increasingly evident due to the use of sensitive molecular detection methods. The aim of this study was to use conventional and molecular detection methods to assess the epidemiology of respiratory viral infections in children less than five years of age that were hospitalized with ALRTIs.

    METHODS: The cross-sectional study was designed to investigate the occurrence of respiratory viruses including respiratory syncytisl virus (RSV), human metapneumovirus (HMPV), influenza virus A and B (IFV-A and B), parainfluenzavirus 1, 2, 3 and 4 (PIV 1, 2, 3 and 4), human rhinoviruses (HRV), human enterovirus (HEV), human coronaviruses (HCoV) 229E and OC43, human bocavirus (HBoV) and human adenovirus (HAdV) in hospitalized children with ALRTIs, at Hospital Serdang, Malaysia, from June 16 to December 21, 2009. The study was also designed in part to assess the performance of the conventional methods against molecular methods.

    RESULTS: Viral pathogens were detected in 158 (95.8%) of the patients. Single virus infections were detected in 114 (67.9%) patients; 46 (27.9%) were co-infected with different viruses including double-virus infections in 37 (22.4%) and triple-virus infections in 9 (5.5%) cases. Approximately 70% of samples were found to be positive using conventional methods compared with 96% using molecular methods. A wide range of respiratory viruses were detected in the study. There was a high prevalence of RSV (50.3%) infections, particularly group B viruses. Other etiological agents including HAdV, HMPV, IFV-A, PIV 1-3, HBoV, HCoV-OC43 and HEV were detected in 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 percent of the samples, respectively.

    CONCLUSION: Our results demonstrated the increased sensitivity of molecular detection methods compared with conventional methods for the diagnosis of ARTIs in hospitalized children. This is the first report of HMPV infections in Malaysia.

  7. Kaku Y, Park ES, Noguchi A, Inoue S, Lunt R, Malbas FF, et al.
    J Virol Methods, 2019 07;269:83-87.
    PMID: 30954461 DOI: 10.1016/j.jviromet.2019.03.009
    A novel indirect fluorescent antibody test (IFAT) for detection of IgM against Nipah virus (NiV) was developed using HeLa 229 cells expressing recombinant NiV nucleocapsid protein (NiV-N). The NiV IFAT was evaluated using three panels of sera: a) experimentally produced sera from NiV-N-immunized/pre-immunized macaques, b) post-infection human sera associated with a Nipah disease outbreak in the Philippines in 2014, and c) human sera from a non-exposed Malaysian population. Immunized macaque sera showed a characteristic granular staining pattern of the NiV-N expressed antigen in HeLa 229 cells, which was readily distinguished from negative-binding results of the pre-immunized macaque sera. The IgM antibody titers in sequential serum samples (n = 7) obtained from three Nipah patients correlated well with previously published results using conventional IgM capture ELISA and SNT serology. The 90 human serum samples from unexposed persons were unreactive by IFAT. The IFAT utilizing NiV-N-expressing HeLa 229 cells to detect IgM antibody in an early stage of NiV infection is an effective approach, which could be utilized readily in local laboratories to complement other capabilities in NiV-affected countries.
  8. Lam CW, AbuBakar S, Chang LY
    J Virol Methods, 2017 05;243:1-9.
    PMID: 28082163 DOI: 10.1016/j.jviromet.2017.01.004
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×103 cfu/ml and 5.6×103 cfu/ml) and THP-1 cells (3.5×103 cfu/ml and 2.9×103 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells.
  9. Yee SF, Chu CH, Poili E, Sum MSH
    J Virol Methods, 2017 02;240:69-72.
    PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001
    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
  10. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
  11. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J Virol Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
  12. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J Virol Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
  13. Lazouskaya NV, Palombo EA, Poh CL, Barton PA
    J Virol Methods, 2014 Mar;197:67-76.
    PMID: 24361875 DOI: 10.1016/j.jviromet.2013.12.005
    Enterovirus 71 (EV 71) is a causative agent of mild Hand Foot and Mouth Disease but is capable of causing severe complications in the CNS in young children. Reverse genetics technology is currently widely used to study the pathogenesis of the virus. The aim of this work was to determine and evaluate the factors which can contribute to infectivity of EV 71 RNA transcripts in vitro. Two strategies, overlapping RT-PCR and long distance RT-PCR, were employed to obtain the full-length genome cDNA clones of the virus. The length of the poly(A) tail and the presence of non-viral 3'-terminal sequences were studied in regard to their effects on infectivity of the in vitro RNA transcripts of EV 71 in cell culture. The data revealed that only cDNA clones obtained after long distance RT-PCR were infectious. No differences were observed in virus titres after transfection with in vitro RNA harbouring a poly(A) tail of 18 or 30 adenines in length, irrespective of the non-viral sequences at the 3'-terminus.
  14. Chua CL, Chan YF, Sam IC
    J Virol Methods, 2014 Jan;195:126-33.
    PMID: 24134938 DOI: 10.1016/j.jviromet.2013.10.015
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of β-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.
  15. Wong CL, Sieo CC, Tan WS
    J Virol Methods, 2013 Nov;193(2):611-9.
    PMID: 23933075 DOI: 10.1016/j.jviromet.2013.07.053
    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease threatening the cattle industry since the sixteenth century. In recent years, the development of diagnostic assays for FMD has benefited considerably from the advances of recombinant DNA technology. In this study, the immunodominant region of the capsid protein VP1 of the foot-and-mouth disease virus (FMDV) was fused to the T7 bacteriophage and expressed on the surface of the bacteriophage capsid protein. The recombinant protein of about 42 kDa was detected by the anti-T7 tag monoclonal antibody in Western blot analysis. Phage ELISA showed that both the vaccinated and positive infected bovine sera reacted significantly with the recombinant T7 particle. This study demonstrated the potential of the T7 phage displaying the VP1 epitope as a diagnostic reagent.
  16. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
  17. Goh ZH, Tan SG, Bhassu S, Tan WS
    J Virol Methods, 2011 Jul;175(1):74-9.
    PMID: 21536072 DOI: 10.1016/j.jviromet.2011.04.021
    Macrobrachium rosenbergii nodavirus (MrNv) infects giant freshwater prawns and causes white tail disease (WTD). The coding region of the capsid protein of MrNv was amplified with RT-PCR and cloned into the pTrcHis2-TOPO vector. The recombinant plasmid was introduced into Escherichia coli and protein expression was induced with IPTG. SDS-PAGE showed that the recombinant protein containing the His-tag and myc epitope has a molecular mass of about 46 kDa and it was detected by the anti-His antibody in Western blotting. The protein was purified using immobilized metal affinity chromatography (IMAC) and transmission electron microscopic analysis revealed that the recombinant protein assembled into virus-like particles (VLPs) with a diameter of about 30±3 nm. The size of the particles was confirmed by dynamic light scattering. Nucleic acids were extracted from the VLPs and treatment with nucleases showed that they were mainly RNA molecules. This is the first report describing the production of MrNv capsid protein in bacteria and its assembly into VLPs.
  18. Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, et al.
    J Virol Methods, 2010 Feb;163(2):459-64.
    PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014
    Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
  19. Subramanian SK, Tey BT, Hamid M, Tan WS
    J Virol Methods, 2009 Dec;162(1-2):179-83.
    PMID: 19666056 DOI: 10.1016/j.jviromet.2009.07.034
    The broad species tropism of Nipah virus (NiV) coupled with its high pathogenicity demand a rapid search for a new biomarker candidate for diagnosis. The matrix (M) protein was expressed in Escherichia coli and purified using a Ni-NTA affinity column chromatography and sucrose density gradient centrifugation. The recombinant M protein with the molecular mass (Mr) of about 43 kDa was detected by anti-NiV serum and anti-myc antibody. About 50% of the M protein was found to be soluble and localized in cytoplasm when the cells were grown at 30 degrees C. Electron microscopic analysis showed that the purified M protein assembled into spherical particles of different sizes with diameters ranging from 20 to 50 nm. The purified M protein showed significant reactivity with the swine sera collected during the NiV outbreak, demonstrating its potential as a diagnostic reagent.
  20. Kong LL, Omar AR, Hair Bejo M, Ideris A, Tan SW
    J Virol Methods, 2009 Nov;161(2):271-9.
    PMID: 19591873 DOI: 10.1016/j.jviromet.2009.06.023
    A SYBR Green I based one-step real-time reverse transcriptase polymerase chain reaction was developed for the detection and differentiation of very virulent (vv) and classical strains of infectious bursal disease virus (IBDV). The assay showed high PCR efficiency >93% and high reproducibility with coefficient of variation less than 0.5%. When tested on characterized IBDV strains, the very virulent and classical-specific primers detected accurately only vvIBDV and classical IBDV strains, respectively. The diagnostic efficacy of the assay was also tested on 140 bursal samples from experimental infection and 37 bursal samples from cases suspected of IBD. The assay was able to detect IBDV from bursal samples collected at days 3 and 5 post-infection with the vvIBDV strain UPM94/273 and the classical IBDV strain D78. The assay was also able to detect bursal samples infected dually with D78 and UPM94/273. The melting temperature values of the amplification products from the classical and very virulent viral infection were statistically significant (P<0.05). The specificity of the assay for detecting IBDV from suspected cases was confirmed by sequence analysis of the VP2 gene. The assay showed high sensitivity since bursal samples which were negative for IBDV were confirmed by virus isolation and PCR amplification. Hence, the new assay offers an attractive method for rapid detection of strains of IBDV.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links