Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Mo Y, Lim LS, Ng SK
    J Virol Methods, 2024 Sep;329:115005.
    PMID: 39128772 DOI: 10.1016/j.jviromet.2024.115005
    Zoonotic viruses are widely seen as the primary threat for future pandemics. Bats are the most diverse group of mammals, with more than 1400 species distributed across most habitats on Earth. So far, 31 known virus families were associated with bats, although the understanding of most viruses were insufficient. Continuous efforts to discover, understand and monitor these bats viruses, is thereby an area of public health interest. This systematic review was designed to catalogue publications reporting novel bat virus discoveries within PubMed, SCOPUS, and Web of Science databases, within a 5-year period from 2018 to 2022. Various experimental parameters, including sampling locations, methodology, bat species diversity, similarity to known viruses, species demarcation of new viruses, and genomic sequencing strategies, were extracted from 41 publications and analyzed. In total, 72 novel viruses from 19 virus families were identified between 2018 and 2022, particularly from Genomoviridae (DNA viruses) and Coronaviridae (RNA viruses). That said, only a limited number of bat families featured extensively despite noticeable shift towards next generation sequencing methods and metagenomics pipeline for virus identification across different sampling methods. This review aims to provide a comprehensive analysis of the global efforts made over the past five years to identify and characterize emerging viruses in bat species, and to provide a detailed overview of the current technologies and methodologies used in these studies.
  2. Etemadi MR, Jalilian FA, Othman N, Lye MS, Ansari S, Yubbu P, et al.
    J Virol Methods, 2019 07;269:1-6.
    PMID: 30910688 DOI: 10.1016/j.jviromet.2019.03.013
    BACKGROUND: The role of respiratory viruses as the major cause of acute lower respiratory tract infections (ALRTIs) in children is becoming increasingly evident due to the use of sensitive molecular detection methods. The aim of this study was to use conventional and molecular detection methods to assess the epidemiology of respiratory viral infections in children less than five years of age that were hospitalized with ALRTIs.

    METHODS: The cross-sectional study was designed to investigate the occurrence of respiratory viruses including respiratory syncytisl virus (RSV), human metapneumovirus (HMPV), influenza virus A and B (IFV-A and B), parainfluenzavirus 1, 2, 3 and 4 (PIV 1, 2, 3 and 4), human rhinoviruses (HRV), human enterovirus (HEV), human coronaviruses (HCoV) 229E and OC43, human bocavirus (HBoV) and human adenovirus (HAdV) in hospitalized children with ALRTIs, at Hospital Serdang, Malaysia, from June 16 to December 21, 2009. The study was also designed in part to assess the performance of the conventional methods against molecular methods.

    RESULTS: Viral pathogens were detected in 158 (95.8%) of the patients. Single virus infections were detected in 114 (67.9%) patients; 46 (27.9%) were co-infected with different viruses including double-virus infections in 37 (22.4%) and triple-virus infections in 9 (5.5%) cases. Approximately 70% of samples were found to be positive using conventional methods compared with 96% using molecular methods. A wide range of respiratory viruses were detected in the study. There was a high prevalence of RSV (50.3%) infections, particularly group B viruses. Other etiological agents including HAdV, HMPV, IFV-A, PIV 1-3, HBoV, HCoV-OC43 and HEV were detected in 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 percent of the samples, respectively.

    CONCLUSION: Our results demonstrated the increased sensitivity of molecular detection methods compared with conventional methods for the diagnosis of ARTIs in hospitalized children. This is the first report of HMPV infections in Malaysia.

  3. Kaku Y, Park ES, Noguchi A, Inoue S, Lunt R, Malbas FF, et al.
    J Virol Methods, 2019 07;269:83-87.
    PMID: 30954461 DOI: 10.1016/j.jviromet.2019.03.009
    A novel indirect fluorescent antibody test (IFAT) for detection of IgM against Nipah virus (NiV) was developed using HeLa 229 cells expressing recombinant NiV nucleocapsid protein (NiV-N). The NiV IFAT was evaluated using three panels of sera: a) experimentally produced sera from NiV-N-immunized/pre-immunized macaques, b) post-infection human sera associated with a Nipah disease outbreak in the Philippines in 2014, and c) human sera from a non-exposed Malaysian population. Immunized macaque sera showed a characteristic granular staining pattern of the NiV-N expressed antigen in HeLa 229 cells, which was readily distinguished from negative-binding results of the pre-immunized macaque sera. The IgM antibody titers in sequential serum samples (n = 7) obtained from three Nipah patients correlated well with previously published results using conventional IgM capture ELISA and SNT serology. The 90 human serum samples from unexposed persons were unreactive by IFAT. The IFAT utilizing NiV-N-expressing HeLa 229 cells to detect IgM antibody in an early stage of NiV infection is an effective approach, which could be utilized readily in local laboratories to complement other capabilities in NiV-affected countries.
  4. Lim PY, Cardosa MJ
    J Virol Methods, 2019 08;270:113-119.
    PMID: 31100287 DOI: 10.1016/j.jviromet.2019.05.005
    The goal of this paper was to develop a sandwich ELISA that can detect intact human enterovirus A71 (EV-A71) virus-like particles (VLPs) in vaccines. This assay specifically detected EV-A71 viruses from different sub-genogroups as well as EV-A71 VLPs, and treatment of VLPs with high heat and low pH reduced or completely abolished detection of the VLPs suggesting that the ELISA detected assembled particles. Using a purified VLP as a reference standard, a quantitative sandwich ELISA (Q-ELISA) was established which was used to monitor the yield and purity of the VLPs during manufacturing. Coupled with immunogenicity studies, the Q-ELISA was used to evaluate the performance of the VLPs and formalin-inactivated EV-A71 vaccine. This assay has the potential to play an important role in the development of an efficient process to produce and purify the VLPs and in examining the quality of EV-A71 vaccines.
  5. Yeong MY, Cheow PS, Abdullah S, Song AA, Lei-Rossmann J, Tan TK, et al.
    J Virol Methods, 2021 05;291:114099.
    PMID: 33592218 DOI: 10.1016/j.jviromet.2021.114099
    The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
  6. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
  7. Lam CW, AbuBakar S, Chang LY
    J Virol Methods, 2017 05;243:1-9.
    PMID: 28082163 DOI: 10.1016/j.jviromet.2017.01.004
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×103 cfu/ml and 5.6×103 cfu/ml) and THP-1 cells (3.5×103 cfu/ml and 2.9×103 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells.
  8. Yee SF, Chu CH, Poili E, Sum MSH
    J Virol Methods, 2017 02;240:69-72.
    PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001
    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
  9. Fu JYL, Chong YM, Sam IC, Chan YF
    J Virol Methods, 2022 Mar;301:114462.
    PMID: 35026305 DOI: 10.1016/j.jviromet.2022.114462
    Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.
  10. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
  11. Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, et al.
    J Virol Methods, 2007 Aug;143(2):140-6.
    PMID: 17442409
    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
  12. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, et al.
    J Virol Methods, 2007 Mar;140(1-2):75-9.
    PMID: 17140671
    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
  13. Kong YY, Thay CH, Tin TC, Devi S
    J Virol Methods, 2006 Dec;138(1-2):123-30.
    PMID: 17000012 DOI: 10.1016/j.jviromet.2006.08.003
    The use of the polymerase chain reaction (PCR) in molecular diagnosis is now accepted worldwide and has become an essential tool in the research laboratory. In the laboratory, a rapid detection, serotyping and quantitation, one-step real-time RT-PCR assay was developed for dengue virus using TaqMan probes. In this assay, a set of forward and reverse primers were designed targeting the serotype conserved region at the NS5 gene, at the same time flanking a variable region for all four serotypes which were used to design the serotype-specific TaqMan probes. This multiplex one-step RT-PCR assay was evaluated using 376 samples collected during the year 2003. These groups included RNA from prototype dengue virus (1-4), RNA from acute serum from which dengue virus was isolated, RNA from tissue culture supernatants of dengue virus isolated, RNA from seronegative acute samples (which were culture and IgM negative) and RNA from samples of dengue IgM positive sera. The specificity of this assay was also evaluated using a panel of sera which were positive for other common tropical disease agents including herpes simplex virus, cytomegalovirus, measles virus, varicella-zoster virus, rubella virus, mumps virus, WWF, West Nile virus, Japanese encephalitis virus, S. typhi, Legionella, Leptospira, Chlamydia, and Mycoplasma. The sensitivity, specificity and real-time PCR efficiency of this assay were 89.54%, 100% and 91.5%, respectively.
  14. Ng MY, Tan WS, Abdullah N, Ling TC, Tey BT
    J Virol Methods, 2006 Oct;137(1):134-9.
    PMID: 16860402
    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.
  15. Lee TC, Yusoff K, Nathan S, Tan WS
    J Virol Methods, 2006 Sep;136(1-2):224-9.
    PMID: 16797732
    Newcastle disease virus (NDV) strains can be classified as virulent or avirulent based upon the severity of the disease. Differentiation of the virus into virulent and avirulent is necessary for effective control of the disease. Biopanning experiments were performed using a disulfide constrained phage displayed heptapeptide library against three pathotypes of NDV strains: velogenic (highly virulent), mesogenic (moderately virulent) and lentogenic (avirulent). A phage clone bearing the peptide sequence SWGEYDM capable of distinguishing virulent from avirulent NDV strains was isolated. This phage clone was employed as a diagnostic reagent in a dot blot assay and it successfully detected only virulent NDV strains.
  16. Ooi DJ, Dzulkurnain A, Othman RY, Lim SH, Harikrishna JA
    J Virol Methods, 2006 Sep;136(1-2):160-5.
    PMID: 16781785
    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.
  17. Kashiwazaki Y, Na YN, Tanimura N, Imada T
    J Virol Methods, 2004 Nov;121(2):259-61.
    PMID: 15381364
    A monoclonal antibody (MAb) based solid-phase blocking ELISA was developed for detection of antibodies to Nipah virus. The ELISA was designed to detect remaining antigens on the plate with anti-Nipah MAb conjugate after the reaction with sample serum, and enabled simple procedure, detection of neutralizing antibody to Nipah virus, and application of samples from different animal species. Forty of 200 swine reference sera examined were positive by the ELISA, of which thirty seven were found positive by serum neutralization test. Sera from a total of 131 fruit bats captured in Malaysia were also tested and all found negative by the both tests. It is considered that the solid-phase blocking ELISA can be used as a screening test for Nipah virus infection followed by the serum neutralization test as confirmatory test.
  18. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J Virol Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
  19. Mohd Jaafar F, Attoui H, Gallian P, Isahak I, Wong KT, Cheong SK, et al.
    J Virol Methods, 2004 Mar 01;116(1):55-61.
    PMID: 14715307
    Banna virus (BAV, genus Seadornavirus, family Reoviridae) is an arbovirus suspected to be responsible for encephalitis in humans. Two genotypes of this virus are distinguishable: A (Chinese isolate, BAV-Ch) and B (Indonesian isolate, BAV-In6969) which exhibit only 41% amino-acid identity in the sequence of their VP9. The VP7 to VP12 of BAV-Ch and VP9 of BAV-In6969 were expressed in bacteria using pGEX-4T-2 vector. VP9 was chosen to establish an ELISA for BAV, based mainly on two observations: (i). VP9 is a major protein in virus-infected cells and is a capsid protein (ii). among all the proteins expressed, VP9 was obtained in high amount and showed the highest immuno-reactivity to anti-BAV ascitic fluid. The VP9s ELISA was evaluated in three populations: French blood donors and two populations (blood donors and patients with a neurological syndrome) from Malaysia, representing the region where the virus was isolated in the past. The specificity of this ELISA was >98%. In mice injected with live BAV, the assay detected IgG-antibody to BAV infection 21 days post-injection, which was confirmed by Western blot using BAV-infected cells. The VP9 ELISA permits to determine the sero-status of a population without special safety precautions and without any requirements to propagate the BAV. This test should be a useful tool for epidemiological survey of BAV.
  20. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM
    J Virol Methods, 2003 Feb;107(2):163-7.
    PMID: 12505630
    Feline calicivirus (FCV) has been used by researchers as a surrogate for Norwalk virus (NV), since they share a similar genomic organization, physicochemical characteristics, and are grouped in the same family, Caliciviridae. Unlike NV, however, FCV can grow in established cell lines and produce a syncytial form of cytopathic effect. In this report, we describe the development and standardization of a plaque assay for FCV using monolayers of an established line of feline kidney (CrFK) cells in 12-well cell culture plates. The assay method has demonstrated reproducibility, ease of performance and resulted in clear plaque zones, readable in 24 h after virus inoculation. The infectivity titre of the virus by this plaque assay agreed well with tissue culture infectious dose(50) (TCID(50)) determinations. The described plaque assay would be a valuable tool in conducting various quantitative investigations using FCV as a model for NV and Norwalk-like viruses (NLV).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links