Displaying publications 1 - 20 of 95 in total

Abstract:
Sort:
  1. Rosnani Abdul Rashid, Azhar Mohamad, Mat Rasol Awang, Hassan Hamdani Mutaat, Shaiful Azuar Mohamad, Affrida Abu Hasan, et al.
    MyJurnal
    Mushroom can be used as a biological indicator in assessing radiological impact on the
    environment. Radiological effect would be reflected through morphological changes as well as
    those changes at molecular level. For this purpose, a preliminary work was conducted, which
    included DNA isolation, optimization of PCR parameters for Inter-Simple Sequence Repeat (ISSR)
    and primers screening on Pleurotus sajor caju mushroom strains from Nuclear Malaysia’s
    Sterifeed Mushrooms Collection Centre. In this work, DNA isolation technique from cap and stalk
    of fruit body were optimized and quantified. It was found that stalk produced highest amount of
    genomic DNA at 304.01ng/µl and cap at 149.00ng/µl. A total of 100 ISSR primers were tested and
    51 primers were successfully amplified. These primers will be used further for dose response
    evaluation and molecular profiling in mushroom species.
  2. Khairuddin Mohamad Kontol, Ismail Sulaiman, Faizal Azrin Abdul Razalim
    MyJurnal
    Sludge and scales produced during oil and gas production contain enhanced naturally occurring
    radioactive material (NORM). Sludge and scales are under the jurisdiction of Department of
    Environment (DOE) and also Atomic Energy Licensing Board (AELB). AELB has issued a
    guideline regarding the disposal of sludge and scales as in its guideline (LEM/TEK/30 SEM.2,
    1996). In this guideline, Radiological Impact Assessment (RIA) should be carried out on all
    proposed disposals and has to demonstrate that no member of public will be exposed to more than
    1 mSv/y. This paper presented RIA analysis using RESRAD computer code for the disposal of
    treated sludge. RESRAD (RESidual RADioactive) developed by Argonne National Laboratory is to
    estimate radiation doses and risks from residual radioactive materials. The dose received by the
    member of public is found to be well below the stipulated limit.
  3. Jaafar Abdullah, Roslan Yahya, Lahasen@Norman Shah Dahing, Hearie Hassan, Engku Mohd Fahmi Engku Chik, Mohamad Rabaie Shari, et al.
    MyJurnal
    “Batu Bersurat Terengganu (inscribed stone)” is the oldest artifact with Jawi writing on it. The
    artifact proves that the Kingdom of Terengganu exist earlier than 1326 or 1386. To date, a lot of
    studies on the content of the inscription have been carried out by historians and archaeologists, but
    no scientific investigation about the material composition and its provenance has been performed.
    This paper focuses on the study of the origin of the Batu Bersurat Terengganu using NeutronInduced
    Prompt Gamma-Ray Techniques (NIPGAT). Portable NIPGAT system has been designed
    and developed based on volumetric measurement methods and it will be considered as a nondestructive
    testing. The system uses low activity of californium-252 (Cf-252) neutron radioactive
    sources, gamma ray spectroscopy and special computer software to carry out the investigation. The
    study found that the Batu Bersurat Terengganu is made of dolerite based on the elemental
    composition of the stone. Although most of the scientific data for the study of the origin are already
    obtained, but further research is still ongoing to complete the scope of this study.
  4. Shakinah Salleh, Zaiton Ahmad, Affrida Abu Hassan, Yahya Awang, Yutaka Oono
    MyJurnal
    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture
    industry and the lack of new local owned varieties led to this mutation breeding research. The
    objective of this study was to compare the effectiveness of ion beam irradiation in generating
    mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. ‘Reagan Red’. Ion
    beams has become an efficient physical mutagen for mutation breeding. The ray florets and nodal
    explants were irradiated with ion beams at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy.
    The 50% of in vitro shoot regeneration (RD50) for ray florets explants was 2.0 Gy and for nodal
    explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0
    times higher than the nodal explants. The regenerated plantlets were planted in the greenhouse at
    MARDI, Cameron Highlands for morphological screening. Overall performance of survival
    plantlets derived from in vitro nodal and ray floret explants was recorded. The characters studied
    include plant morphology and flowering characteristic. The ray florets explants were found to be
    more sensitive to ion beam irradiation and generated more mutations as compared to nodal
    explants.
  5. Ismail Mustapha, Samihah Mustaffh, Md Fakarudin Ab Rahman, Roslan Yahya, Lahasen @ Norman Shah Dahin, Nor Pa’iza Mohd Hasan, et al.
    MyJurnal
    Non-destructive and real time method becomes a well-liked method to researchers in the oil palm
    industry since 2000. This method has the ability to detect oil content in order to increase the
    production of oil palm for better profit. Hence, this research investigates the potential of neutron
    source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical
    formula C55H96O6. For this paper, oil palm loose fruit was being used and divided into three
    groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each
    group were collected from a private plantation in Malaysia. Each sample was scanned using
    neutron backscattered technique. The higher neutron count, the more hydrogen content, and the
    more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r2=0.98.
    This research proves that neutron backscattered technique can be used as a non-destructive and
    real time grading system for palm oil.
  6. Noriah Jamal, Humairah Samad Cheung, Siti Kamariah Che Mohamad, Ellyda Muhamad Nordin
    MyJurnal
    This paper aims at presenting preliminary results of a survey on physical factors, namely tube
    potential (kV), tube current exposure time product (mAs) and compressed breast thickness (CBT)
    during voluntary mammography screening using Full-Field Digital Mammography (FFDM) System
    in Malaysia. Retrospective data were collected from 1128 FFDM images of 282 women from three
    major ethnic groups (Malay, Chinese and Indian) who underwent voluntary screening
    mammography at Breast Centre, International Islamic University Malaysia from January to March
    2008. Results from the present study were then compared with results from the previous study on
    Screen-Film Mammography System (SFM) according to the ethnic group for both Cranio-caudal
    (CC) and Mediol-Lateral (MLO) views. We found that the mean kV for CC view for the three ethnic
    groups are Malay (28), Chinese (28) and Indian (28), and for MLO view are Malay (29), Chinese
    (28) and Indian (29). These values are higher than the kV for SFM which were Malay (26), Chinese
    (27) and Indian (26) for CC and Malay (26), Chinese (27) and Indian (26) for CC and MLO views
    respectively. The mean mAs for CC and MLO views for FFDM were lower compared to SFM
    systems. These values were Malay (104), Chinese (108) and Indian (91) for CC views and Malay
    (106), Chinese (105), and Indian (94) for MLO views for the FFDM system. The values for SFM
    system are for CC and MLO views were Malay (120), Chinese (106) and Indian (126), and Malay
    (166), Chinese (132), Indian (183) respectively. The median CBT for CC and MLO views increased
    by 27% and 7% respectively on the FFDM compared to the SFM system. In conclusion, the FFDM
    operates with higher kV, lower mAs, and higher CBT when compared with SFM system. Median
    CBT on CC and MLO view with FFDM system are 27% and 7% higher respectively compared to
    the SFM. We are currently collecting data on mean glandular dose with FFDM systems to assess
    how the change in local mammography practice influences this value. This will allow comparison
    with related data from other parts of the world.
  7. Rida Tajau, Siti Farhana Fathy, Mek Zah Salleh, Nor Azowa Ibrahim, Maznah Ismail, Kamaruddin Hashim
    MyJurnal
    The acrylated palm oil (APO) nanoparticle is a potential product that can be used as carriers in
    medical field. The main focus of the present study was to study the potential of the APO
    nanoparticles for used in a controlled drug delivery system. The microemulsion system is used as a
    medium to incorporate an active substance such as Thymoquinone (TQ) into the APO polymeric
    micelle and then the radiation technique is used as a tool for the synthesis of TQ-loaded APO
    nanoparticle. The nano-size TQ-loaded APO particles resulted the particle size of less than 150 nm
    with spherical in shape. The TQ release profile was carried out in potassium buffer saline (PBS)
    solutions (pH 7.4) at 37
    oC. And, the zero-order model has been used to determine the mechanism
    of the drug release from the corresponding nanoparticles, respectively. The TQ release was found
    to be sustained and controlled in pH 7.4. At pH 7.4, the release of TQ followed the zero-order
    model. The in-vitro drug release study showed a good prospect of the APO nanoparticle on being a
    potential drug carrier as there are toxic against colon cancer cells and not toxic towards normal
    cells. This suggested that the APO product produce using this radiation technique can be
    developed into different type of carrier systems for controlled drug release applications.
  8. Wo, Yii Mei, Hidayah Shahar, Zaharudin Ahmad
    MyJurnal
    Present of 241Am in the environment is being determined as part of surveillance and research
    programs related to nuclear activities. The separation of 241Am from environmental samples was
    carried out against the IAEA’s reference material by using an improved in-house radiochemical
    separation method through anion exchange column, followed by the electro-deposition on a
    stainless steel disc, and finally assayed on alpha spectrometry counting system. The resulting
    spectra showed good isolated peak, indicating a good separation of the radionuclide of interest.
    The analytical results were in good agreement with the certified value for IAEA-326 and IAEA-368
    with the calculated U-score was 0.36 and 0.82, respectively, showing no significant difference
    between the experimental and certified value. Using this method, distributions of 241Am in seabed
    surface sediment in the Exclusive Economic Zone of East Coast Peninsular Malaysia were studied.
    Samples were collected during June 2008 where the concentrations of 241Am were found to be
    ranged from < 0.08 to 0.36 Bq/kg, dry weight.
  9. Zal U’yun Wan Mahmood, Norfaizal Mohamed @ Mohamad, Nik Azlin Nik Ariffin, Abdul Kadir Ishak
    MyJurnal
    An improved laboratory technique for measurement of polonium-210(
    210Po) in environmental
    samples has been developed in Radiochemistry and Environmental Laboratory (RAS), Malaysian
    Nuclear Agency. To further improve this technique, a study with the objectives to determine the
    optimum conditions for
    210Po deposition and; evaluate the accuracy and precision results for
    the determination of 2 1 0 P o in environmental samples was carried-out. Polonium-210 which
    is an alpha emitter obtained in acidic solution through total digestion and dissolution of samples
    has been efficiently plated onto one side of the silver disc in the spontaneous plating process for
    measurement of its alpha activity. The optimum conditions for deposition of 210Po were achieved
    using hydrochloric acid (HCl) media at acidity of 0.5 M with the presence of 1.0 gram hydroxyl
    ammonium chloride and the plating temperature at 90
    oC. The plating was carried out in 80 mL
    HCl solution (0.5 M) for 4 hours. The recorded recoveries obtained using 2 0 9 P o tracers in
    the CRM IAEA-385 and environmental samples were 85% – 98% whereby the efficiency of the
    new technique is a distinct advantage over the existing techniques. Therefore, optimization of
    deposition parameters is a prime importance to achieve accuracy and precision results as well as
    economy and time saving
  10. Zalina Laili, Mohd Zaidi Ibrahim, Muhamat Omar
    MyJurnal
    A study has been carried out using a gamma-ray spectrometric system to determine the natural
    radioactivity level in bricks made from industrial waste and their associated radiation hazard.
    Brick-1 and brick-2 contained waste from coal power plant and granite industry, respectively. The
    leachability of radionuclides from these bricks was also investigated. The activity concentration
    values of 226Ra,
    228Ra,
    232Th, and 40K are 64.25, 63.15, 67.9 and 254.19 Bq/kg, respectively in brick-
    1, and 193, 164.48, 164.63 and 1348.75 Bq/kg, respectively in brick-2. The radiation hazard
    indexes such as radium equivalent activities (Raeq), representative level index (Iγr), external hazard
    index (Hex) and internal hazard index (Hin) were calculated and compared with the internationally
    approved values. Results indicate that brick-1 showed less radiological hazard than brick-2. This
    suggested that brick-1 could be used in building construction without exceeding the proposed
    criterion level.The leachability of 226Ra for bricks showed the activity concentration slightly
    exceeded 1 Bq/L which is the limit generally used for industrial wastewater.
  11. Yusof Abdullah, Mohd Reusmaazran Yusof, Megat Harun Al Rashid Megat Ahmad, Hafizal Yazid, Abdul Aziz Mohamed, Norazila Mat Sali, et al.
    MyJurnal
    Effects of 3 MeV electron (10 mA) irradiation at room temperature on the phase, microstructure,
    electrical and life time properties of 4H-SiC wafer were investigated by scanning electron
    microscopy (SEM), X-ray diffraction (XRD), four point probe current-voltage measurements and
    positron annihilation spectroscopy. It was found that irradiation damage in SiC wafer is
    significantly increased with the increase of radiation dose as observed in SEM. Irradiation also
    resulted in modification of crystallite size as identified by XRD. The resistance of a sample before
    irradiation was found to be 0.8 MΩ, whereas for a sample irradiated at 200 kGy, the resistance as
    measured by four point probe was 5.2 MΩ. It seems that the increase of resistance hence, reduction
    in conductivities could be due to defects induced by the radiation dose received then created
    leakage currents at both reverse and low-forward biases and creation of traps in the SiC.
    Meanwhile positron annihilation spectroscopy (PAS) was used to analyse the life time of irradiated
    samples which nonetheless shows that all irradiated sample have similar life time of 151 ps. It was
    observed that that no degradation process of materials experienced by SiC wafer irradiated at 500
    kGy.
  12. Hoe, Phua Choo Kwai, Khairuddin Abdul Rahim, Ahmad Nazrul Abd Wahid
    MyJurnal
    Development of biofertilizer seed treatments for okra seeds were carried out by mixing phosphate
    solubilising bacteria (AP 3) and plant growth promoter (AP 2) with adhesives. The seeds were
    coated with inoculums and four types of adhesives namely, Gum Arabic; Polyethylene Glycol
    (PEG); Sodium Alginate and Methycellulose respectively. From eight seed treatments, all seed
    treatments significantly increased seed germinations except treatment T4 (Gum Arabic and AP3).
    In general, maximum germination rates and log of viable cells were observed when treated with
    polyethylene glycol 4000 (PEG) mixed with AP2 (T7) and AP3 (T8). These results show that using
    PEG as adhesive enhanced the germination rates and log of viable cells of AP2 and AP3. Thus,
    PEG could be a good adhesive for seed treatment. In greenhouse experiment, okra seeds treatment
    with AP2 and PEG (T1) showed the highest dry weight compared to other treatments. Seeds
    treatment with AP3 and PEG (T2) showed higher contribution of N compare to seeds treatment
    (T1). There were no significant different within seed treatments and urea treatment in okra yield.
    All treatments significantly increased yields compared with control
  13. M. Fahmi M. Yusof, Nornashriah A. Rashid, Reduan Abdullah
    MyJurnal
    The glow curve in TLD-100 was compared by applying long preheat time, short preheat time
    techniques and without preheat technique before the TLD readout. Fading effect of the TLD signal
    upon certain storage time with long preheat time (100°C, 10 minutes using the oven) and short
    preheat time techniques (100°C, 10 seconds using the reader) were also studied. 15 TLD-100 chips
    were used with 3 of the TLD chips were used for measuring background radiation. 12 TLD chips
    were annealed, irradiated, preheated long and short preheat time techniques) and analyzed. The TL
    signals output from TLD chips of without preheated were used as the control. Two sets of data were
    taken using TLD chips irradiated with 6 MV and 10 MV photon beams. TL signal output was
    recorded the highest for short preheat time, followed by long preheat time and no preheating. The
    TL signal loss upon certain storage time was also reduced when short preheat time technique was
    applied. By applying long preheat time technique the low temperature peak in the glow curve was
    completely removed for both energies. Whereas, TLD chips exposed to 6 MV and with short preheat
    time technique the low temperature peak did not disappear completely but decreased in intensity as
    compared to the control data by 19.80%, 37.69%, 48.19% and 100% at 24, 48, 72 and 96 hours
    after exposure prior to readout, respectively. Meanwhile, for 10 MV photon beam with short
    preheat time, the small peak intensity was reduced by 19.58% for readout at 24 hours after
    irradiation and 100% for 48,72 and 96 hours delayed time prior to readout. It was observed that
    the TLD-100 was highly dependent on preheat heating time before readout. Short preheat time
    technique was able to reduce post irradiation fading of TLD-100 dosimeters
  14. Mohamad Hairie Rabir, Usang, Mark Dennis, Naim Syauqi Hamzah, Julia Abdul Karim, Mohd Amin Sharifuldin Salleh
    MyJurnal
    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial
    criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of
    basic nuclear research, manpower training, and production of radioisotopes. This
    paperdescribes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP);
    focusing on the application of the developed reactor 3D model for criticality calculation,
    analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D
    continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full
    model of the TRIGA reactor. The consistency and accuracy of the developed RTP MCNP model
    was established by comparing calculations to the experimental results and TRIGLAV
    code.MCNP and TRIGLAV criticality prediction of the critical core loading are in a very good
    agreement with the experimental results.Power peaking factor calculated with TRIGLAV are
    systematically higher than the MCNP but the trends are the same.Depletion calculation by both
    codes show differences especially at high burnup.The results are conservative and can be
    applied to show the reliability of MCNP code and the model both for design and verification of
    the reactor core, and future calculation of its neutronic parameters.
  15. Zal Uyun Wan Mahmood, Yii, Mei-Wo, Che Abd. Rahim Mohamed, Norfaizal Mohamed @ Mohamad, Abdul Kadir Ishak
    MyJurnal
    The most commonly used techniques of alpha and gamma spectrometry were performed to measure
    210Pb activity in marine sediment core as a comparison. Alpha analytical technique measured the
    activity of 210Pb from it’s in-grow grand-daughter 210Po after a chemical separation, assuming
    radioactive equilibrium between the two radionuclides. Meanwhile, gamma analysis technique
    allows direct measurement, non-destructive and no preliminary chemical separation. Through the
    comparison, it is found that both alpha and gamma analysis techniques were slightly difference.
    Overall, the results from alpha analytical technique were basically higher than those from the
    gamma analytical techniques. Some logical argument had been discussed to explain this situation.
    In routine analysis, the analytical technique used should be chosen carefully based on advantages
    and disadvantages of the each technique and analysis requirements. Therefore, it is recommended to
    determine exactly the needs and purpose of analysis and to know the sample history before decide
    the appropriate analytical technique
  16. Ligam, Alfred Sanggau, Zarina Masood, Mohd Fairus Abdul Farid, Ahmad Nabil Abd Rahim, Nurhayati Ramli, Mohammad Suhaimi Kassim
    MyJurnal
    Radiation Monitoring System aims to limit the exposure dose to personnel to the lowest level
    referring to the concept of ALARA (As Low As Reasonably Achievable). Atomic Energy Licensing
    (Basic Safety Radiation Protection) Regulations 2010 is useful to control employee and public
    radiation protection program and guideline. This paper discussed the methodology and
    implementation of the radiation protection program at PUSPATI TRIGA Reactor (RTP) which is
    implemented in Nuklear Malaysia, Complex Bangi.
  17. Khomsaton Abu Bakar, Selambakkannu, Sarala, Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Ming, Ting Teo, Natasha lsnin, et al.
    MyJurnal
    The combination of irradiation and biological technique was chosen to study COD, BOD5 and colour removal from textiles effluent in the presence of food industry wastewater. Two biological treatments, the first consisting a mix of non irradiated textile and food industry wastewater and the second a mix of irradiated textiles wastewater and food industry wastewater were operated in parallel. Reduction percentage of COD in textiles wastewater increased from 29.4% after radiation to 62.4% after further undergoing biological treatment. After irradiation, the BOD5 of textiles wastewater was reduced by 22.1%, but reverted to the original value of 36mg/1 after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADM1 after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment.
  18. Radaideh, K.M., Matalqah, L.M., Tajuddin, A.A., Lee Luen, F.W., Bauk, S., Abdel Munem, E.M.E
    MyJurnal
    The ultimate check of the actual dose delivered to a patient in radiotherapy can be achieved by using dosimetric measurements. The aims of this study were to develop and evaluate a custom handmade head and neck phantom for evaluation of Three-Dimensional Conformal Radiation Therapy (3D-CRT) dose planning and delivery. A phantom of head and neck region of a medium built male patient with nasopharyngeal cancer was constructed from Perspex material. Primary and secondary Planning Target Volume (PTV) and twelve Organs at Risk (OAR) were delineated using Treatment Planning System (TPS) guided by computed tomography printout transverse images. One hundred and seven (107) holes distributed among the organs were loaded with Rod-shaped Thermoluminescent dosimeters (LiF:Mg,Ti TLDs) after common and individual calibration. Head and neck phantom was imaged, planned and irradiated conformally (3D-CRT) by linear accelerator (LINAC Siemens Artiste). The planned predicted doses by TPS at PTV and OAR regions were obtained and compared with the TLD measured doses using the phantom. Repeated TLD measurements were reproducible with a percent standard deviation of < 3.5%. Moreover, the average of dose discrepancies between TLDs reading and TPS predicted doses were found to be < 5.3%. The phantom’s preliminary results have proved to be a valuable tool for 3D-CRT treatment dose verification.
  19. Md Suhaimi Elias, Mohd Suhaimi Hamzah, Mohd Suhaimi Hamzah, Siong, Wee Boon, Nazaratul Ashifa Abdullah Salim
    MyJurnal
    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values.
  20. Yusof Abdullah, Mohd Reusmaazran Yusof, Nadira Kamarudin, Paulus, Wilfred Sylvester, Rusnah Mustaffa, Nurazila Mat Zali, et al.
    MyJurnal
    Al/B4C composites with 0 wt.%, 5 wt.% and 10 wt.% of B4C were prepared by powder metallurgy and their properties were characterised successfully. Investigation of the effect of milling times (4, 8, 12, 16 hours) on microstructure, phase identification, hardness and neutron attenuation coefficient of composites has been studied. The results showed that hardness increased with increased of milling time, with maximum hardness obtained at 16 hours milling time. The increment is slower as the composition of B4C increased. The hardness of Al/10%B4C, Al/5%B4C and Al/0%B4C were 81.7, 78.7 and 61.2 HRB respectively. Morphology of scanning electron microscopy (SEM) showed that microstructures play important role in controlling the hardness. Meanwhile, x-ray diffraction (XRD) analysis showed the phases and crystalline present in composites with an indication that crystalline of the grain increased as the milling time increased. Neutron absorption of Al/10%B4C composites showed that this composite has the highest attenuation coefficient, thus indicating that it is the best composites for neutron shielding.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links