Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Abu Hatab AS, Ahmad YH, Ibrahim M, Elsafi Ahmed A, Abdul Rahman MB, Al-Qaradawi SY
    Langmuir, 2023 Jan 06.
    PMID: 36607611 DOI: 10.1021/acs.langmuir.2c02873
    Water electrolysis has attracted scientists' attention as a green route for energy generation. However, the sluggish kinetics of oxygen evolution reaction (OER) remarkably increases the reaction overpotential. In this work, we developed Co-based nanomaterials as cost-effective, highly efficient catalysts for OER. In this regard, different Co-based metal-organic frameworks (MOFs) were synthesized using different organic linkers. After annealing under inert atmosphere, the corresponding Co-embedded mesoporous carbon (Co/MC) materials were produced. Among them, Co/MC synthesized using 2-methyl imidazole (Co/NMC-2MeIM) expressed the highest surface area (412 m2/g) compared to its counterparts. Furthermore, it expressed a higher degree of defects as depicted by Raman spectra. Co/NMC-2MeIM exhibited the best catalytic performance toward OER in alkaline medium. It afforded an overpotential of 292 mV at a current density of 10 mA cm-2 and a Tafel slope of 99.2 mV dec-1. The superior electrocatalytic performance of Co/NMC-2MeIM is attributed to its high content of Co3+ on the surface, high surface area, and enhanced electrical conductivity induced by nitrogen doping. Furthermore, its high content of pyridinic-N and high degree of defects remarkably enhance the charge transfer between the adsorbed oxygen species and the active sites. These results may pave the avenue toward further investigation of metal/carbon materials in a wide range of electrocatalytic applications.
  2. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R
    Langmuir, 2012 Feb 7;28(5):2395-403.
    PMID: 22168405 DOI: 10.1021/la203736b
    Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D-glucoside (2-HDG) and 2-hexyldecyl β(α)-D-maltoside (2-HDM) based on glucose and maltose, respectively. The self-assembly properties of these glycolipids have been studied, observing the phase behavior under thermotropic and lyotropic conditions. Due to their amphiphilic characteristics, 2-HDG and 2-HDM possess rich phase behavior in dry form and in aqueous dispersions. In the thermotropic study, 2-HDG formed a columnar hexagonal liquid crystalline phase, whereas in a binary aqueous system, 2-HDG formed an inverted hexagonal liquid crystalline phase in equilibrium with excess aqueous solution. Furthermore, aqueous dispersions of the hexagonal liquid crystal could be obtained, dispersions known as hexosomes. On the other hand, 2-HDM formed a lamellar liquid crystalline phase (smectic A) in thermotropic conditions, whereas multilamellar vesicles have been observed in equilibrium with aqueous media. Surprisingly, 2-HDM mixed with sodium dodecyl sulfate or aerosol OT induced the formation of more stable unilamellar vesicles. Thus, the branched-chain glycolipids 2-HDG and 2-HDM not only provided alternative nonionic surfactants with rich phase behavior and versatile nanostructures, but also could be used as new drug carrier systems in the future.
  3. Ajith A, Gowthaman NSK, John SA, Elango KP
    Langmuir, 2023 Jul 25;39(29):9990-10000.
    PMID: 37436168 DOI: 10.1021/acs.langmuir.3c00768
    Different modes of attachment of graphene oxide (GO) on an electrode surface resulted in unusual catalytic behavior respective of attachment because of film thickness. The present work investigates the direct adsorption of GO to the surface of a glassy carbon (GC) electrode. Scanning electron microscopy images revealed that multilayers of GO get adsorbed on the GC substrate and the adsorption was limited by folding up of the GO sheets at their edges. π-π and hydrogen bonding interactions between the GO and GC substrate flagged the adsorption of GO. pH studies revealed that higher adsorption of GO was achieved at pH = 3 rather than at pH = 7 and 10. Even though the electroactive surface area of adsorbed GO (GOads) was not remarkable (0.069 cm2), upon electrochemical reduction of GOads (Er-GOads), the electroactive surface area was escalated to be 0.174 cm2. Similarly, the RCT of Er-GOads was boosted to 2.9 kΩ compared to GOads which is 19 kΩ. Open circuit voltage was recorded to study the adsorption of GO on the GC electrode. Multilayered GO best fitted with the Freundlich adsorption isotherm, and the Freundlich constants like n and KF were found to be 4 and 0.992, respectively. The Freundlich constant "n" revealed the adsorption of GO on the GC substrate to be a physisorption process. Furthermore, the electrocatalytic performance of Er-GOads was demonstrated by taking uric acid as a probe. The modified electrode showed excellent stability toward the determination of uric acid.
  4. Amirmoshiri M, Zhang L, Puerto MC, Tewari RD, Bahrim RZBK, Farajzadeh R, et al.
    Langmuir, 2020 Sep 01.
    PMID: 32870010 DOI: 10.1021/acs.langmuir.0c01521
    We investigate the dynamic adsorption of anionic surfactant C14 - 16 alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed. It is found that the surfactant breakthrough in the neutral-wet core is delayed more compared to that in the water-wet core because the deposited crude oil components on the rock surface increase the surfactant adsorption via hydrophobic interactions. As the surfactant adsorption is satisfied, the crude oil components are solubilized by surfactant micelles and some of the adsorbed surfactants are released from the rock surface. The released surfactant dissolves in the flowing surfactant solution, thereby resulting in an overshoot of the produced surfactant concentration with respect to the injection value. Furthermore, under water-wet conditions, changing the surface redox potential from an oxidized to a reduced state decreases the surfactant adsorption level by 40%. We find that the decrease in surfactant adsorption is caused not only by removing the iron oxide but also by changing the calcium concentration after the core restoration process (calcite dissolution and ion exchange as a result of using EDTA). Findings from this study suggest that laboratory surfactant adsorption tests need to be conducted by considering the wettability and redox state of the rock surface while recognizing how core restoration methods could significantly alter the ionic composition during surfactant flooding.
  5. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
  6. Debord J, Chu KH, Harel M, Salvestrini S, Bollinger JC
    Langmuir, 2023 Feb 28;39(8):3062-3071.
    PMID: 36794717 DOI: 10.1021/acs.langmuir.2c03105
    The name of Herbert Freundlich is commonly associated with a power relationship for adsorbed amount of a substance (Cads) against the concentration in solution (Csln), such that Cads = KCslnn; this isotherm (together with the Langmuir isotherm) is considered to be the model of choice for correlating the experimental adsorption data of micropollutants or contaminants of emerging concern (pesticides, pharmaceuticals, and personal care products), but it also concerns the adsorption of gases on solids. However, Freundlich's 1907 paper was a "sleeping beauty", which only started to attract significant citations from the early 2000s onward; moreover, these citations were too often wrong. In this paper, the main steps in the historical developments of Freundlich isotherm are identified, along with a discussion of several theoretical points: (1) derivation of the Freundlich isotherm from an exponential distribution of energies, leading to a more general equation, based on the Gauss hypergeometric function, of which the power Freundlich equation is an approximation; (2) application of this hypergeometric isotherm to the case of competitive adsorption, when the binding energies are perfectly correlated; and (3) new equations for estimating the Freundlich coefficient KF from physicochemical properties such as the sticking surface or probability. From new data treatment of two examples from the literature, the influence of several parameters is highlighted, and the application of linear free-energy relationships (LFER) to the Freundlich parameters for different series of compounds is evoked, along with its limitations. We also suggest some ideas that may be worth exploring in the future, such as extending the range of applications of the Freundlich isotherm by means of its hypergeometric version, extending the competitive adsorption isotherm in the case of partial correlation, and exploring the interest of the sticking surfaces or probabilities instead of KF for LFER analysis.
  7. Febriyanti E, Suendo V, Mukti RR, Prasetyo A, Arifin AF, Akbar MA, et al.
    Langmuir, 2016 06 14;32(23):5802-11.
    PMID: 27120557 DOI: 10.1021/acs.langmuir.6b00675
    The unique three-dimensional pore structure of KCC-1 has attracted significant attention and has proven to be different compared to other conventional mesoporous silica such as the MCM-41 family, SBA-15, or even MSN nanoparticles. In this research, we carefully examine the morphology of KCC-1 to define more appropriate nomenclature. We also propose a formation mechanism of KCC-1 based on our experimental evidence. Herein, the KCC-1 morphology was interpreted mainly on the basis of compiling all observation and information taken from SEM and TEM images. Further analysis on TEM images was carried out. The gray value intensity profile was derived from TEM images in order to determine the specific pattern of this unique morphology that is found to be clearly different from that of other types of porous spherical-like morphologies. On the basis of these results, the KCC-1 morphology would be more appropriately reclassified as bicontinuous concentric lamellar morphology. Some physical characteristics such as the origin of emulsion, electrical conductivity, and the local structure of water molecules in the KCC-1 emulsion were disclosed to reveal the formation mechanism of KCC-1. The origin of the KCC-1 emulsion was characterized by the observation of the Tyndall effect, conductometry to determine the critical micelle concentration, and Raman spectroscopy. In addition, the morphological evolution study during KCC-1 synthesis completes the portrait of the formation of mesoporous silica KCC-1.
  8. Harilal M, G Krishnan S, Pal B, Reddy MV, Ab Rahim MH, Yusoff MM, et al.
    Langmuir, 2018 02 06;34(5):1873-1882.
    PMID: 29345940 DOI: 10.1021/acs.langmuir.7b03576
    This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.
  9. Jabarullah NH, Verrelli E, Mauldin C, Navarro LA, Golden JH, Madianos LM, et al.
    Langmuir, 2015 Jun 9;31(22):6253-64.
    PMID: 25996202 DOI: 10.1021/acs.langmuir.5b00686
    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.
  10. Khalil M, Fahmi A, Nizardo NM, Amir Z, Mohamed Jan B
    Langmuir, 2021 Jul 09.
    PMID: 34242029 DOI: 10.1021/acs.langmuir.1c01271
    An investigation on the application of thermosensitive core-shell Fe3O4@PNIPAM nanogels in enhanced oil recovery was successfully performed. Here, the unique core-shell architecture was fabricated by conducting the polymerization at the surface of 3-butenoic acid-functionalized Fe3O4 nanoparticles and characterized using X-ray diffraction (XRD), 1H NMR, vibration sample magnetometer (VSM), and high-resolution transmission electron microscopy (HR-TEM). According to the results, this core-shell structure was beneficial for achieving the desired high viscosity and low nanofluid mobility ratio at high temperatures, which is essential for enhanced oil recovery (EOR) application. The results demonstrated that the nanogels exhibited a unique temperature-dependent flow behavior due to the PNIPAM shell's ability to transform from a hydrated to a dehydrated state above its low critical solution temperature (LCST). At such conditions, the nanogels exhibited a significantly low mobility ratio (M = 0.86), resulting in an even displacement front during EOR and leads to higher oil production. Based on the result obtained from sand pack flooding, about 25.75% of an additional secondary oil recovery could be produced when the nanofluid was injected at a temperature of 45 °C. However, a further increase in the flooding temperature could result in a slight reduction in oil recovery due to the precipitation of some of the severely aggregated nanogels at high temperatures.
  11. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, et al.
    Langmuir, 2018 10 30;34(43):12730-12738.
    PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321
    The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
  12. Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H
    Langmuir, 2024 Feb 06;40(5):2465-2486.
    PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558
    Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
  13. Law JKC, Ng WM, Chong WH, Li Q, Zhang L, Khoerunnisa F, et al.
    Langmuir, 2023 Apr 11;39(14):4904-4916.
    PMID: 36992604 DOI: 10.1021/acs.langmuir.2c03164
    The possible magnetophoretic migration of iron oxide nanoparticles through the cellulosic matrix within a single layer of paper is challenging with its underlying mechanism remained unclear. Even with the recent advancements of theoretical understanding on magnetophoresis, mainly driven by cooperative and hydrodynamics phenomena, the contributions of these two mechanisms on possible penetration of magnetic nanoparticles through cellulosic matrix of paper have yet been proven. Here, by using iron oxide nanoparticles (IONPs), both nanospheres and nanorods, we have investigated the migration kinetics of these nanoparticles through grade 4 Whatman filter paper with a particle retention of 20-25 μm. By performing droplet tracking experiments, the real-time stained area growth of the particle droplet on the filter paper, under the influences of a grade N40 NdFeB magnet, were recorded. Our results show that the spatial and temporal expansion of the IONP stain is biased toward the magnet and such an effect is dependent on (i) particle concentration and (ii) particle shape. The kinetics data were first analyzed by treating it as a radial wicking fluid, and later the IONP distribution within the cellulosic matrix was investigated by optical microscopy. The macroscopic flow front velocities of the stained area ranged from 259 μm/s to 16 040 μm/s. Moreover, the microscopic magnetophoretic velocity of nanorod cluster was also successfully measured as ∼214 μm/s. Findings in this work have indirectly revealed the strong influence of cooperative magnetophoresis and the engineering feasibility of paper-based magnetophoretic technology by taking advantage of magnetoshape anisotropy effect of the particles.
  14. Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim J
    Langmuir, 2020 07 21;36(28):8033-8055.
    PMID: 32551702 DOI: 10.1021/acs.langmuir.0c00839
    The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications. Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter N* and magnetic Grashof number Grm, which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.
  15. Leong YK, Du M, Au PI, Clode P, Liu J
    Langmuir, 2018 08 21;34(33):9673-9682.
    PMID: 30053778 DOI: 10.1021/acs.langmuir.8b00213
    Purified sodium montmorillonite (SWy-2) gels of a few percent solids displayed pronounced time-dependent rheological or aging behavior with a long time scale. The aging behavior was characterized by an increasing yield stress with rest time. This increase continued even after a week of rest. An open sponge-like cellular microstructure of the aged gels was captured by cryo-SEM with samples prepared at high pressure. The size of the openings of the cellular structure is small, generally less than 1 μm formed by thin flexible platelet with curling edges. This structure was formed by strong attractive and repulsive forces. The rapid yield stress increase in the early stage of aging is due to rapid bond formation occurring between network platelets and free individual platelet, isolated aggregates, and platelet particles in network with free edges. Over time, all platelets are bonded in the network. During aging, the platelets in the structure would have to adjust continually in response to a net force acting on it by its neighbors. The high concentration of platelets responding to this force imbalance is the cause of the long aging time scale. The operation of the attractive and repulsive forces, and the shape and charge properties of the platelets are responsible for the cellular structure being built. At complete structural recovery, the structure should attain the state of lowest free energy. The repulsive force regulates the development of the microstructure. The aging data of the 3.3 wt % gel were fitted by different aging models.
  16. Li HY, Lin HC, Huang BJ, Kai Lo AZ, Saidin S, Lai CH
    Langmuir, 2020 09 29;36(38):11374-11382.
    PMID: 32902993 DOI: 10.1021/acs.langmuir.0c02297
    Recently, studies on the development and investigation of carbohydrate-functionalized silica nanoparticles (NPs) and their biomedicine applications such as cell-specific targeting and bioimaging has been carried out extensively. Since the number of breast cancer patients has been growing in recent years, potential NPs were being studied in this project for targeting breast cancer cells. Mannose receptors can be found on the surface of MDA-MB-231, which is a kind of human breast cancer cell line. Therefore, we decorated a cyanine 3 fluorescent dye (Cy3) and mannosides on the surface of silica NPs for the purpose of imaging and targeting. Galactoside was also introduced onto the surface of silica NPs acting as a control sample. Various sizes of silica NPs were synthesized by using different amounts of ammonium to investigate the effect of the size of NPs on the cellular uptake rate. The physical properties of these NPs were characterized by scanning electron microscope, dynamic light scattering, and their zeta potential. Cellular experiments demonstrated that mannoside-modified NPs can be uptaken by MDA-MB-231. From the experiment, we found out that the best cellular uptake rate of nanoparticle size is about 250 nm. The MTT assay showed that Man@Cy3SiO2NPs are not cytotoxic, indicating they may have the potential for biomedical applications.
  17. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
  18. Majid AAA, Wu DT, Koh CA
    Langmuir, 2017 10 24;33(42):11436-11445.
    PMID: 28926254 DOI: 10.1021/acs.langmuir.7b02642
    In situ rheological measurements for clathrate hydrate slurries were performed using a high pressure rheometer to determine the effect of hydrate particles on the viscosity and transportability of these slurries. These measurements were conducted using a well-characterized model water-in-oil emulsion ( Delgado-Linares et al. Model Water in-Oil Emulsions for Gas Hydrate Studies in Oil Continuous Systems . Energy Fuels 2013 , 27 , 4564 - 4573 ). The emulsion consists of a model liquid hydrocarbon, water, and a surfactant mixture of sorbitane monooleate 80 (Span 80) and sodium di-2-ethylhexylsulfosuccinate (Aerosol OT, AOT). This emulsion was used as an analog to water-in-crude oil (w/o) emulsions and provides reproducible results. The flow properties of the model w/o emulsion prior to hydrate formation were investigated in terms of several parameters including water percentage, temperature and pressure. A general equation that describes the viscosity of the emulsion as a function of the aforementioned parameters was developed. This general equation was able to predict the viscosity of a saturated emulsion at various temperatures and water percentages to within ±13% error. The general equation was then used to analyze the effect of hydrate formation on the transportability of gas hydrate slurries. As for hydrate slurries investigation, measurements were performed using methane gas as the hydrate former and a straight vane impeller as a stirring system. Tests were conducted at constant temperature and pressure (1 °C and 1500 psig of methane) and water percentages ranging from 5 to 30 vol %. Results of this work were analyzed and presented in terms of relative values, i.e., viscosities of the slurries relative to the viscosities of the continuous phase at similar temperature and pressure. In this work, a correlation to predict the relative viscosity of a hydrate slurry at various hydrate volume fractions was developed. Analysis of the developed correlation showed that the model was able to predict the relative viscosity of a hydrate slurry to within ±17% error.
  19. Nazar MF, Yasir Siddique M, Saleem MA, Zafar M, Nawaz F, Ashfaq M, et al.
    Langmuir, 2018 Sep 11;34(36):10603-10612.
    PMID: 30109940 DOI: 10.1021/acs.langmuir.8b01775
    To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated μEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated μEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum μE of formulation A and formulation B, respectively. Each loaded μE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each μE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.
  20. Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, et al.
    Langmuir, 2018 07 10;34(27):7971-7980.
    PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210
    An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links