Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Yusof NS, Khan MN
    Langmuir, 2010 Jul 6;26(13):10627-35.
    PMID: 20524703 DOI: 10.1021/la100863q
    Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K(X)(Br), for the probable presence of wormlike/viscoelastic micellar solutions under the conditions of the present study.
  2. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R
    Langmuir, 2012 Feb 7;28(5):2395-403.
    PMID: 22168405 DOI: 10.1021/la203736b
    Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D-glucoside (2-HDG) and 2-hexyldecyl β(α)-D-maltoside (2-HDM) based on glucose and maltose, respectively. The self-assembly properties of these glycolipids have been studied, observing the phase behavior under thermotropic and lyotropic conditions. Due to their amphiphilic characteristics, 2-HDG and 2-HDM possess rich phase behavior in dry form and in aqueous dispersions. In the thermotropic study, 2-HDG formed a columnar hexagonal liquid crystalline phase, whereas in a binary aqueous system, 2-HDG formed an inverted hexagonal liquid crystalline phase in equilibrium with excess aqueous solution. Furthermore, aqueous dispersions of the hexagonal liquid crystal could be obtained, dispersions known as hexosomes. On the other hand, 2-HDM formed a lamellar liquid crystalline phase (smectic A) in thermotropic conditions, whereas multilamellar vesicles have been observed in equilibrium with aqueous media. Surprisingly, 2-HDM mixed with sodium dodecyl sulfate or aerosol OT induced the formation of more stable unilamellar vesicles. Thus, the branched-chain glycolipids 2-HDG and 2-HDM not only provided alternative nonionic surfactants with rich phase behavior and versatile nanostructures, but also could be used as new drug carrier systems in the future.
  3. Zahid NI, Abou-Zied OK, Hashim R, Heidelberg T
    Langmuir, 2012 Mar 20;28(11):4989-95.
    PMID: 22364590 DOI: 10.1021/la3001976
    Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.
  4. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
  5. Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R
    Langmuir, 2013 Dec 23;29(51):15794-804.
    PMID: 24274824 DOI: 10.1021/la4040134
    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
  6. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
  7. Jabarullah NH, Verrelli E, Mauldin C, Navarro LA, Golden JH, Madianos LM, et al.
    Langmuir, 2015 Jun 9;31(22):6253-64.
    PMID: 25996202 DOI: 10.1021/acs.langmuir.5b00686
    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.
  8. Salim M, Wan Iskandar WF, Patrick M, Zahid NI, Hashim R
    Langmuir, 2016 06 07;32(22):5552-61.
    PMID: 27183393 DOI: 10.1021/acs.langmuir.6b01007
    Inverse bicontinuous cubic phases of lyotropic liquid crystal self-assembly have received much attention in biomedical, biosensing, and nanotechnology applications. An Ia3d bicontinuous cubic based on the gyroid G-surface can be formed by the Guerbet synthetic glucolipid 2-hexyl-decyl-β-d-glucopyranoside (β-Glc-OC6C10) in excess water. The small water channel diameter of this cubic phase could provide nanoscale constraints in encapsulation of large molecules and crystallization of membrane proteins, hence stresses the importance of water channel tuning ability. This work investigates the swelling behavior of lyotropic self-assembly of β-Glc-OC6C10 which could be controlled and modulated by different surfactants as a hydration-modulating agent. Our results demonstrate that addition of nonionic glycolipid octyl-β-d-glucopyranoside (β-Glc-OC8) at 20 and 25 mol % gives the largest attainable cubic water channel diameter of ca. 62 Å, and formation of coacervates which may be attributed to a sponge phase were seen at 20 mol % octyl-β-d-maltopyranoside (β-Mal-OC8). Swelling of the cubic water channel can also be attained in charged surfactant-doped systems dioctyl sodium sulfosuccinate (AOT) and hexadecyltrimethylammonium bromide (CTAB), of which phase transition occurred from cubic to a lamellar phase. Destabilization of the cubic phase to an inverse hexagonal phase was observed when a high amount of charged lecithin (LEC) and stearylamine (SA) was added to the lipid self-assembly.
  9. Febriyanti E, Suendo V, Mukti RR, Prasetyo A, Arifin AF, Akbar MA, et al.
    Langmuir, 2016 06 14;32(23):5802-11.
    PMID: 27120557 DOI: 10.1021/acs.langmuir.6b00675
    The unique three-dimensional pore structure of KCC-1 has attracted significant attention and has proven to be different compared to other conventional mesoporous silica such as the MCM-41 family, SBA-15, or even MSN nanoparticles. In this research, we carefully examine the morphology of KCC-1 to define more appropriate nomenclature. We also propose a formation mechanism of KCC-1 based on our experimental evidence. Herein, the KCC-1 morphology was interpreted mainly on the basis of compiling all observation and information taken from SEM and TEM images. Further analysis on TEM images was carried out. The gray value intensity profile was derived from TEM images in order to determine the specific pattern of this unique morphology that is found to be clearly different from that of other types of porous spherical-like morphologies. On the basis of these results, the KCC-1 morphology would be more appropriately reclassified as bicontinuous concentric lamellar morphology. Some physical characteristics such as the origin of emulsion, electrical conductivity, and the local structure of water molecules in the KCC-1 emulsion were disclosed to reveal the formation mechanism of KCC-1. The origin of the KCC-1 emulsion was characterized by the observation of the Tyndall effect, conductometry to determine the critical micelle concentration, and Raman spectroscopy. In addition, the morphological evolution study during KCC-1 synthesis completes the portrait of the formation of mesoporous silica KCC-1.
  10. Peach J, Czajka A, Hazell G, Hill C, Mohamed A, Pegg JC, et al.
    Langmuir, 2017 03 14;33(10):2655-2663.
    PMID: 28215094 DOI: 10.1021/acs.langmuir.7b00324
    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO2-philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO2-phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO2. These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.
  11. Xu H, Li P, Ma K, Welbourn RJL, Penfold J, Roberts DW, et al.
    Langmuir, 2017 09 26;33(38):9944-9953.
    PMID: 28871785 DOI: 10.1021/acs.langmuir.7b02725
    We describe a new laboratory synthesis of the α-methyl ester sulfonates based on direct sulfonation of the methyl ester by SO3 introduced from the vapor phase. This was used to synthesize a chain deuterated sample of αC14MES, which was then used to measure the surface excess of αC14MES directly at the air/water interface over a wide range of concentration using neutron reflection. The adsorption isotherm could be fitted to an empirical equation close to a Langmuir isotherm and gave a limiting surface excess of (3.4 ± 0.1) × 10-6 mol m-2 in the absence of added electrolyte. The neutron-measured surface excesses were combined with the integrated Gibbs equation to fit the variation in surface tension with concentration (σ-ln C curve). The fit was exact provided that we used a prefactor consistent with the counterion at the surface being an impurity divalent ion, as has previously been found for sodium diethylhexylsulfosuccinate (aerosol OT or AOT) and various perfluorooctanoates. The critical micelle concentration (CMC) was determined from this fit to be 2.4 ± 0.3 mM in the absence of electrolyte. In the presence of 100 mM NaCl, this contamination was suppressed and the σ-ln C curve could be fitted using the integrated Gibbs equation with the expected prefactor of 1. The new data were used to reinterpret measurements by Danov et al. on an unpurified sample of αC14MES for which computer refinement was used to try to eliminate the effects of the impurities.
  12. Majid AAA, Wu DT, Koh CA
    Langmuir, 2017 10 24;33(42):11436-11445.
    PMID: 28926254 DOI: 10.1021/acs.langmuir.7b02642
    In situ rheological measurements for clathrate hydrate slurries were performed using a high pressure rheometer to determine the effect of hydrate particles on the viscosity and transportability of these slurries. These measurements were conducted using a well-characterized model water-in-oil emulsion ( Delgado-Linares et al. Model Water in-Oil Emulsions for Gas Hydrate Studies in Oil Continuous Systems . Energy Fuels 2013 , 27 , 4564 - 4573 ). The emulsion consists of a model liquid hydrocarbon, water, and a surfactant mixture of sorbitane monooleate 80 (Span 80) and sodium di-2-ethylhexylsulfosuccinate (Aerosol OT, AOT). This emulsion was used as an analog to water-in-crude oil (w/o) emulsions and provides reproducible results. The flow properties of the model w/o emulsion prior to hydrate formation were investigated in terms of several parameters including water percentage, temperature and pressure. A general equation that describes the viscosity of the emulsion as a function of the aforementioned parameters was developed. This general equation was able to predict the viscosity of a saturated emulsion at various temperatures and water percentages to within ±13% error. The general equation was then used to analyze the effect of hydrate formation on the transportability of gas hydrate slurries. As for hydrate slurries investigation, measurements were performed using methane gas as the hydrate former and a straight vane impeller as a stirring system. Tests were conducted at constant temperature and pressure (1 °C and 1500 psig of methane) and water percentages ranging from 5 to 30 vol %. Results of this work were analyzed and presented in terms of relative values, i.e., viscosities of the slurries relative to the viscosities of the continuous phase at similar temperature and pressure. In this work, a correlation to predict the relative viscosity of a hydrate slurry at various hydrate volume fractions was developed. Analysis of the developed correlation showed that the model was able to predict the relative viscosity of a hydrate slurry to within ±17% error.
  13. Harilal M, G Krishnan S, Pal B, Reddy MV, Ab Rahim MH, Yusoff MM, et al.
    Langmuir, 2018 02 06;34(5):1873-1882.
    PMID: 29345940 DOI: 10.1021/acs.langmuir.7b03576
    This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.
  14. Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, et al.
    Langmuir, 2018 07 10;34(27):7971-7980.
    PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210
    An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
  15. Saari NAN, Mislan AA, Hashim R, Zahid NI
    Langmuir, 2018 07 31;34(30):8962-8974.
    PMID: 29999321 DOI: 10.1021/acs.langmuir.8b01899
    Five synthetic β-d-maltosides derived from Guerbet branched alcohols, whose total hydrocarbon chain length ranged from C8 to C24, were synthesized to a high anomeric purity, and their thermal properties, liquid-crystalline phases, and structures were characterized using differential scanning calorimetry, optical polarizing microscopy, and small-angle X-ray scattering. Thermal investigations of all anhydrous Guerbet maltosides showed that they do not form solid crystals but undergo a glass transition upon temperature change in the range of 35-53 °C. The glassy crystalline structure turns into the liquid-crystalline structure upon heating or addition of water. In thermotropic studies, the lamellar phase formation is prominent in shorter-chain-length analogues, whereas the longer-chain compounds exhibit a more frustrated form of self-assembly in the formation of a metastable state, polymorphism, and inverse bicontinuous cubic structure ( Ia3 d). The excess water conditions show that the phase formation is dominated by the lamellar phase for the longer-chain compounds. Normal micellar solution was observed in the shortest-chain-length maltosides because of the enlargement of hydrated maltose headgroups. The self-assembly of both dry and fully hydrated Guerbet maltosides, which exhibited glass-forming abilities and showed surface activity and also the ability to act as membrane-stabilizing compounds, makes them ideal candidates for practical use in industry as well as biomedical research.
  16. Leong YK, Du M, Au PI, Clode P, Liu J
    Langmuir, 2018 08 21;34(33):9673-9682.
    PMID: 30053778 DOI: 10.1021/acs.langmuir.8b00213
    Purified sodium montmorillonite (SWy-2) gels of a few percent solids displayed pronounced time-dependent rheological or aging behavior with a long time scale. The aging behavior was characterized by an increasing yield stress with rest time. This increase continued even after a week of rest. An open sponge-like cellular microstructure of the aged gels was captured by cryo-SEM with samples prepared at high pressure. The size of the openings of the cellular structure is small, generally less than 1 μm formed by thin flexible platelet with curling edges. This structure was formed by strong attractive and repulsive forces. The rapid yield stress increase in the early stage of aging is due to rapid bond formation occurring between network platelets and free individual platelet, isolated aggregates, and platelet particles in network with free edges. Over time, all platelets are bonded in the network. During aging, the platelets in the structure would have to adjust continually in response to a net force acting on it by its neighbors. The high concentration of platelets responding to this force imbalance is the cause of the long aging time scale. The operation of the attractive and repulsive forces, and the shape and charge properties of the platelets are responsible for the cellular structure being built. At complete structural recovery, the structure should attain the state of lowest free energy. The repulsive force regulates the development of the microstructure. The aging data of the 3.3 wt % gel were fitted by different aging models.
  17. Nazar MF, Yasir Siddique M, Saleem MA, Zafar M, Nawaz F, Ashfaq M, et al.
    Langmuir, 2018 Sep 11;34(36):10603-10612.
    PMID: 30109940 DOI: 10.1021/acs.langmuir.8b01775
    To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated μEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated μEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum μE of formulation A and formulation B, respectively. Each loaded μE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each μE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.
  18. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, et al.
    Langmuir, 2018 10 30;34(43):12730-12738.
    PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321
    The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
  19. Zahid NI, Ji L, Khyasudeen MF, Friedrich A, Hashim R, Marder TB, et al.
    Langmuir, 2019 07 23;35(29):9584-9592.
    PMID: 31287700 DOI: 10.1021/acs.langmuir.9b01767
    New designer biofluorophores are being increasingly used in the investigation of complex cellular processes. In this study, we utilized new derivatives of pyrene (Py), i.e., 2-n-alkyl-pyrenes (Py-C4 and Py-C8), in order to probe different regions inside the hydrophobic tail of n-dodecyl β-d-maltoside (βMal-C12) in two different phases (cubic ↔ lamellar). Although the sensitivity to the local environment is reduced compared to that of Py, attaching C4 and C8 at the 2-position of Py can provide a possible means to probe the local hydrophobicity in different parts of the tail region. The absence of excimer fluorescence and the ratio of the vibronic fluorescence peak intensities (I1/I3) in a lipid environment indicate the existence of Py as monomers in the hydrophobic region, similar to hydrophobic solvation, yet close to the headgroup region. When Py is replaced by Py-C4 and Py-C8, there is a small increase in hydrophobicity (reduction in I1/I3) as the Py moiety is pulled deeper inside the tail region of both cubic and lamellar phases. The larger space of the tail region in the lamellar phase is reflected as more local hydrophobicity measured by the probes which can penetrate deep inside, whereas the curved structure of the cubic phase limits the available space for the probes. Three fluorescence lifetime components were measured in lipid, indicating the heterogeneous nature of the hydrophobic region. In the lamellar phase, a large reduction in the average lifetime value, led by the long decay component, was measured for Py-C4 (reduction by 25%) and Py-C8 (45%) compared to that of the parent Py. This observation suggests the presence of a mechanism of interaction more collisional than static between the Py moiety and the tail region of the bilayer unit due to the ample space provided by the lamellar phase as the probe is buried deeper inside the hydrophobic region. A much smaller effect was observed in the cubic phase and was correlated with the tight environment around the probes, which stems from the increased curvature of the cubic phase. The current results provide a deeper understanding of the hydrophobic region during phase transition of lipid self-assembly which is important for better control during the process of membrane-protein crystallization.
  20. Ng WM, Katiyar A, Mathivanan V, Teng XJ, Leong S, Low S, et al.
    Langmuir, 2020 May 19;36(19):5085-5095.
    PMID: 32338911 DOI: 10.1021/acs.langmuir.0c00135
    A detailed study of the sedimentation kinetics of iron oxide nanoparticle (IONP) clusters composed of nanospheres and nanorods is presented. Measurements were performed to determine the absorbance of an IONP suspension undergoing sedimentation over time by using a UV-vis spectrophotometer with simultaneous monitoring of the hydrodynamic diameter of the clusters formed with dynamic light scattering (DLS). Mathematical analysis based on Happel's spherical and cylindrical models was conducted to reveal the relationship between the settling velocity of the IONP clusters and their packing density. For the case of IONP clusters composed of rodlike particles, two distinctive phases of sedimentation were recorded, with the occurrence of rapid sedimentation at the beginning of the process (phase I) followed by a slower settling rate (phase II). In sedimentation phase II, even though the nanorod clusters had a hydrodynamic size of >500 nm, which was much larger than that of the nanosphere clusters (∼200 nm), their settling velocity of 0.0038 mm/min was still slower than that of the nanosphere clusters. Such observations were mainly a result of the packing density differences between the formed clusters; due to the end-to-end particle interactions of nanorods, the nanorod clusters were less tightly packed and more permeable. In addition to the mathematical analysis, quartz crystal microbalance with dissipation (QCM-D) was employed to measure the "softness" of the IONP clusters formed, and this physical property can be further related to their packing density. This study illustrated that for a rapidly aggregating system, such as magnetic IONPs, not only do the particle shape and size uniformity contribute to the physical properties of the particle clusters formed but also the nature of the aggregation, either end-to-end and/or side-to-side, should be carefully considered when designing a colloidally stable IONP suspension.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links