Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R
    Langmuir, 2013 Dec 23;29(51):15794-804.
    PMID: 24274824 DOI: 10.1021/la4040134
    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
  2. Zahid NI, Abou-Zied OK, Hashim R, Heidelberg T
    Langmuir, 2012 Mar 20;28(11):4989-95.
    PMID: 22364590 DOI: 10.1021/la3001976
    Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.
  3. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
  4. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R
    Langmuir, 2012 Feb 7;28(5):2395-403.
    PMID: 22168405 DOI: 10.1021/la203736b
    Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D-glucoside (2-HDG) and 2-hexyldecyl β(α)-D-maltoside (2-HDM) based on glucose and maltose, respectively. The self-assembly properties of these glycolipids have been studied, observing the phase behavior under thermotropic and lyotropic conditions. Due to their amphiphilic characteristics, 2-HDG and 2-HDM possess rich phase behavior in dry form and in aqueous dispersions. In the thermotropic study, 2-HDG formed a columnar hexagonal liquid crystalline phase, whereas in a binary aqueous system, 2-HDG formed an inverted hexagonal liquid crystalline phase in equilibrium with excess aqueous solution. Furthermore, aqueous dispersions of the hexagonal liquid crystal could be obtained, dispersions known as hexosomes. On the other hand, 2-HDM formed a lamellar liquid crystalline phase (smectic A) in thermotropic conditions, whereas multilamellar vesicles have been observed in equilibrium with aqueous media. Surprisingly, 2-HDM mixed with sodium dodecyl sulfate or aerosol OT induced the formation of more stable unilamellar vesicles. Thus, the branched-chain glycolipids 2-HDG and 2-HDM not only provided alternative nonionic surfactants with rich phase behavior and versatile nanostructures, but also could be used as new drug carrier systems in the future.
  5. Yusof NS, Khan MN
    Langmuir, 2010 Jul 6;26(13):10627-35.
    PMID: 20524703 DOI: 10.1021/la100863q
    Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K(X)(Br), for the probable presence of wormlike/viscoelastic micellar solutions under the conditions of the present study.
  6. Febriyanti E, Suendo V, Mukti RR, Prasetyo A, Arifin AF, Akbar MA, et al.
    Langmuir, 2016 06 14;32(23):5802-11.
    PMID: 27120557 DOI: 10.1021/acs.langmuir.6b00675
    The unique three-dimensional pore structure of KCC-1 has attracted significant attention and has proven to be different compared to other conventional mesoporous silica such as the MCM-41 family, SBA-15, or even MSN nanoparticles. In this research, we carefully examine the morphology of KCC-1 to define more appropriate nomenclature. We also propose a formation mechanism of KCC-1 based on our experimental evidence. Herein, the KCC-1 morphology was interpreted mainly on the basis of compiling all observation and information taken from SEM and TEM images. Further analysis on TEM images was carried out. The gray value intensity profile was derived from TEM images in order to determine the specific pattern of this unique morphology that is found to be clearly different from that of other types of porous spherical-like morphologies. On the basis of these results, the KCC-1 morphology would be more appropriately reclassified as bicontinuous concentric lamellar morphology. Some physical characteristics such as the origin of emulsion, electrical conductivity, and the local structure of water molecules in the KCC-1 emulsion were disclosed to reveal the formation mechanism of KCC-1. The origin of the KCC-1 emulsion was characterized by the observation of the Tyndall effect, conductometry to determine the critical micelle concentration, and Raman spectroscopy. In addition, the morphological evolution study during KCC-1 synthesis completes the portrait of the formation of mesoporous silica KCC-1.
  7. Salim M, Wan Iskandar WF, Patrick M, Zahid NI, Hashim R
    Langmuir, 2016 06 07;32(22):5552-61.
    PMID: 27183393 DOI: 10.1021/acs.langmuir.6b01007
    Inverse bicontinuous cubic phases of lyotropic liquid crystal self-assembly have received much attention in biomedical, biosensing, and nanotechnology applications. An Ia3d bicontinuous cubic based on the gyroid G-surface can be formed by the Guerbet synthetic glucolipid 2-hexyl-decyl-β-d-glucopyranoside (β-Glc-OC6C10) in excess water. The small water channel diameter of this cubic phase could provide nanoscale constraints in encapsulation of large molecules and crystallization of membrane proteins, hence stresses the importance of water channel tuning ability. This work investigates the swelling behavior of lyotropic self-assembly of β-Glc-OC6C10 which could be controlled and modulated by different surfactants as a hydration-modulating agent. Our results demonstrate that addition of nonionic glycolipid octyl-β-d-glucopyranoside (β-Glc-OC8) at 20 and 25 mol % gives the largest attainable cubic water channel diameter of ca. 62 Å, and formation of coacervates which may be attributed to a sponge phase were seen at 20 mol % octyl-β-d-maltopyranoside (β-Mal-OC8). Swelling of the cubic water channel can also be attained in charged surfactant-doped systems dioctyl sodium sulfosuccinate (AOT) and hexadecyltrimethylammonium bromide (CTAB), of which phase transition occurred from cubic to a lamellar phase. Destabilization of the cubic phase to an inverse hexagonal phase was observed when a high amount of charged lecithin (LEC) and stearylamine (SA) was added to the lipid self-assembly.
  8. Jabarullah NH, Verrelli E, Mauldin C, Navarro LA, Golden JH, Madianos LM, et al.
    Langmuir, 2015 Jun 9;31(22):6253-64.
    PMID: 25996202 DOI: 10.1021/acs.langmuir.5b00686
    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.
  9. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
  10. Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim J
    Langmuir, 2020 07 21;36(28):8033-8055.
    PMID: 32551702 DOI: 10.1021/acs.langmuir.0c00839
    The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications. Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter N* and magnetic Grashof number Grm, which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.
  11. Amirmoshiri M, Zhang L, Puerto MC, Tewari RD, Bahrim RZBK, Farajzadeh R, et al.
    Langmuir, 2020 Sep 01.
    PMID: 32870010 DOI: 10.1021/acs.langmuir.0c01521
    We investigate the dynamic adsorption of anionic surfactant C14 - 16 alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed. It is found that the surfactant breakthrough in the neutral-wet core is delayed more compared to that in the water-wet core because the deposited crude oil components on the rock surface increase the surfactant adsorption via hydrophobic interactions. As the surfactant adsorption is satisfied, the crude oil components are solubilized by surfactant micelles and some of the adsorbed surfactants are released from the rock surface. The released surfactant dissolves in the flowing surfactant solution, thereby resulting in an overshoot of the produced surfactant concentration with respect to the injection value. Furthermore, under water-wet conditions, changing the surface redox potential from an oxidized to a reduced state decreases the surfactant adsorption level by 40%. We find that the decrease in surfactant adsorption is caused not only by removing the iron oxide but also by changing the calcium concentration after the core restoration process (calcite dissolution and ion exchange as a result of using EDTA). Findings from this study suggest that laboratory surfactant adsorption tests need to be conducted by considering the wettability and redox state of the rock surface while recognizing how core restoration methods could significantly alter the ionic composition during surfactant flooding.
  12. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
  13. Tham FK, Ng WM, Leong SS, Yeap SP, Low SC, Lee HL, et al.
    Langmuir, 2021 Jan 26.
    PMID: 33496594 DOI: 10.1021/acs.langmuir.0c03153
    Monodispersed iron oxide nanoparticles (IONPs) coated with polystyrenesulfonate (PSS) and cetrimonium bromide (CTAB) have been used to stabilize magnetic Pickering emulsions (MPEs). Magnetophoresis of MPEs under the influence of a low gradient magnetic field (∇B < 100 T/m) was investigated at the macroscopic and microscopic scale. At the macroscopic scale, for the case of pH 7, the MPE achieved a magnetophoretic velocity of 70.9 μm/s under the influence of ∇B at 93.8 T/m. The magnetic separation efficiency of the MPE at 90% was achieved within 30 min for pH 3, 7, and 10. At pH 10, the colloidal stability of the MPE was the lowest compared to that for pH 3 and 7. Thus, MPE at pH 10 required the shortest time for achieving the highest separation efficiency, as the MPE experienced cooperative magnetophoresis at alkaline pH. The creaming rate of the MPE at all conditions was still lower compared to magnetophoresis and was negligible in influencing its separation kinetics profiles. At the microscopic scale, the migration pathways of the MPEs (with diameters between 2.5 and 7.5 μm) undergoing magnetophoresis at ∇B ∼ 13.0 T/m were recorded by an optical microscope. From these experiments, and taking into consideration the MPE size distribution from the dynamic light scattering (DLS) measurement, we determined the averaged microscopic magnetophoretic velocity to be 7.8 ± 5.5 μm/s. By making noncooperative magnetophoresis assumptions (with negligible interactions between the MPEs along their migration pathways), the calculated velocity of individual MPEs was 9.8 μm/s. Such a value was within the percentage error of the experimental result of 7.8 ± 5.5 μm/s. This finding allows for an easy and quick estimation of the magnetophoretic velocity of MPEs at the microscale by using macroscopic separation kinetics data.
  14. Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al.
    Langmuir, 2021 08 03;37(30):9192-9201.
    PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345
    The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
  15. Saleem MA, Yasir Siddique M, Nazar MF, Khan SU, Ahmad A, Khan R, et al.
    Langmuir, 2020 07 14;36(27):7908-7915.
    PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016
    Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
  16. Li HY, Lin HC, Huang BJ, Kai Lo AZ, Saidin S, Lai CH
    Langmuir, 2020 09 29;36(38):11374-11382.
    PMID: 32902993 DOI: 10.1021/acs.langmuir.0c02297
    Recently, studies on the development and investigation of carbohydrate-functionalized silica nanoparticles (NPs) and their biomedicine applications such as cell-specific targeting and bioimaging has been carried out extensively. Since the number of breast cancer patients has been growing in recent years, potential NPs were being studied in this project for targeting breast cancer cells. Mannose receptors can be found on the surface of MDA-MB-231, which is a kind of human breast cancer cell line. Therefore, we decorated a cyanine 3 fluorescent dye (Cy3) and mannosides on the surface of silica NPs for the purpose of imaging and targeting. Galactoside was also introduced onto the surface of silica NPs acting as a control sample. Various sizes of silica NPs were synthesized by using different amounts of ammonium to investigate the effect of the size of NPs on the cellular uptake rate. The physical properties of these NPs were characterized by scanning electron microscope, dynamic light scattering, and their zeta potential. Cellular experiments demonstrated that mannoside-modified NPs can be uptaken by MDA-MB-231. From the experiment, we found out that the best cellular uptake rate of nanoparticle size is about 250 nm. The MTT assay showed that Man@Cy3SiO2NPs are not cytotoxic, indicating they may have the potential for biomedical applications.
  17. Khalil M, Fahmi A, Nizardo NM, Amir Z, Mohamed Jan B
    Langmuir, 2021 Jul 09.
    PMID: 34242029 DOI: 10.1021/acs.langmuir.1c01271
    An investigation on the application of thermosensitive core-shell Fe3O4@PNIPAM nanogels in enhanced oil recovery was successfully performed. Here, the unique core-shell architecture was fabricated by conducting the polymerization at the surface of 3-butenoic acid-functionalized Fe3O4 nanoparticles and characterized using X-ray diffraction (XRD), 1H NMR, vibration sample magnetometer (VSM), and high-resolution transmission electron microscopy (HR-TEM). According to the results, this core-shell structure was beneficial for achieving the desired high viscosity and low nanofluid mobility ratio at high temperatures, which is essential for enhanced oil recovery (EOR) application. The results demonstrated that the nanogels exhibited a unique temperature-dependent flow behavior due to the PNIPAM shell's ability to transform from a hydrated to a dehydrated state above its low critical solution temperature (LCST). At such conditions, the nanogels exhibited a significantly low mobility ratio (M = 0.86), resulting in an even displacement front during EOR and leads to higher oil production. Based on the result obtained from sand pack flooding, about 25.75% of an additional secondary oil recovery could be produced when the nanofluid was injected at a temperature of 45 °C. However, a further increase in the flooding temperature could result in a slight reduction in oil recovery due to the precipitation of some of the severely aggregated nanogels at high temperatures.
  18. Peach J, Czajka A, Hazell G, Hill C, Mohamed A, Pegg JC, et al.
    Langmuir, 2017 03 14;33(10):2655-2663.
    PMID: 28215094 DOI: 10.1021/acs.langmuir.7b00324
    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO2-philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO2-phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO2. These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.
  19. Saari NAN, Mislan AA, Hashim R, Zahid NI
    Langmuir, 2018 07 31;34(30):8962-8974.
    PMID: 29999321 DOI: 10.1021/acs.langmuir.8b01899
    Five synthetic β-d-maltosides derived from Guerbet branched alcohols, whose total hydrocarbon chain length ranged from C8 to C24, were synthesized to a high anomeric purity, and their thermal properties, liquid-crystalline phases, and structures were characterized using differential scanning calorimetry, optical polarizing microscopy, and small-angle X-ray scattering. Thermal investigations of all anhydrous Guerbet maltosides showed that they do not form solid crystals but undergo a glass transition upon temperature change in the range of 35-53 °C. The glassy crystalline structure turns into the liquid-crystalline structure upon heating or addition of water. In thermotropic studies, the lamellar phase formation is prominent in shorter-chain-length analogues, whereas the longer-chain compounds exhibit a more frustrated form of self-assembly in the formation of a metastable state, polymorphism, and inverse bicontinuous cubic structure ( Ia3 d). The excess water conditions show that the phase formation is dominated by the lamellar phase for the longer-chain compounds. Normal micellar solution was observed in the shortest-chain-length maltosides because of the enlargement of hydrated maltose headgroups. The self-assembly of both dry and fully hydrated Guerbet maltosides, which exhibited glass-forming abilities and showed surface activity and also the ability to act as membrane-stabilizing compounds, makes them ideal candidates for practical use in industry as well as biomedical research.
  20. Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, et al.
    Langmuir, 2018 07 10;34(27):7971-7980.
    PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210
    An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links