Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Campana M, Hosking SL, Petkov JT, Tucker IM, Webster JR, Zarbakhsh A, et al.
    Langmuir, 2015 May 26;31(20):5614-22.
    PMID: 25875917 DOI: 10.1021/acs.langmuir.5b00646
    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.
  2. Xu H, Li P, Ma K, Welbourn RJL, Penfold J, Roberts DW, et al.
    Langmuir, 2017 09 26;33(38):9944-9953.
    PMID: 28871785 DOI: 10.1021/acs.langmuir.7b02725
    We describe a new laboratory synthesis of the α-methyl ester sulfonates based on direct sulfonation of the methyl ester by SO3 introduced from the vapor phase. This was used to synthesize a chain deuterated sample of αC14MES, which was then used to measure the surface excess of αC14MES directly at the air/water interface over a wide range of concentration using neutron reflection. The adsorption isotherm could be fitted to an empirical equation close to a Langmuir isotherm and gave a limiting surface excess of (3.4 ± 0.1) × 10-6 mol m-2 in the absence of added electrolyte. The neutron-measured surface excesses were combined with the integrated Gibbs equation to fit the variation in surface tension with concentration (σ-ln C curve). The fit was exact provided that we used a prefactor consistent with the counterion at the surface being an impurity divalent ion, as has previously been found for sodium diethylhexylsulfosuccinate (aerosol OT or AOT) and various perfluorooctanoates. The critical micelle concentration (CMC) was determined from this fit to be 2.4 ± 0.3 mM in the absence of electrolyte. In the presence of 100 mM NaCl, this contamination was suppressed and the σ-ln C curve could be fitted using the integrated Gibbs equation with the expected prefactor of 1. The new data were used to reinterpret measurements by Danov et al. on an unpurified sample of αC14MES for which computer refinement was used to try to eliminate the effects of the impurities.
  3. Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, et al.
    Langmuir, 2018 07 10;34(27):7971-7980.
    PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210
    An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
  4. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
  5. Yeoh KH, Chang YHR, Chew KH, Jiang J, Yoon TL, Ong DS, et al.
    Langmuir, 2024 Feb 08.
    PMID: 38329924 DOI: 10.1021/acs.langmuir.3c03188
    The search for high-performance catalysts to improve the catalytic activity for an oxygen reduction reaction (ORR) is crucial for developing a proton exchange membrane fuel cell. Using the first-principles method, we have performed computational screening on a series of transition metal (TM) atoms embedded in monolayer Nb2S2C to enhance the ORR activity. Through the scaling relationship and volcano plot, our results reveal that the introduction of a single Ni or Rh atom through substitutional doping into monolayer Nb2S2C yields promising ORR catalysts with low overpotentials of 0.52 and 0.42 V, respectively. These doped atoms remain intact on the monolayer Nb2S2C even at elevated temperatures. Importantly, the catalytic activity of the Nb2S2C doped with a TM atom can be effectively correlated with an intrinsic descriptor, which can be computed based on the number of d orbital electrons and the electronegativity of TM and O atoms.
  6. Ooi JSY, Lim CR, Hua CX, Ng JF, New SY
    Langmuir, 2023 Oct 31;39(43):15200-15207.
    PMID: 37851548 DOI: 10.1021/acs.langmuir.3c01748
    This study investigates the effect of DNA hairpins on the stabilization of gold nanoparticles (AuNPs) against salt-induced aggregation (SIA) in label-free colorimetric biosensors. AuNPs were incubated with DNA hairpins of varying stem lengths and toehold sequences, followed by the addition of NaCl, before being subjected to ultraviolet-visible (UV-vis) measurement. Results showed that hairpins with longer stems generally provide better stabilization of AuNPs (18-bp >14-bp >10-bp). No improvement was observed for 14- and 18-bp hairpins with a toehold beyond 8A, which may be attributed to saturated adsorption of hairpins on the gold surface. For 14-bp hairpins with an 8-mer homopolymeric toehold, we observed a stabilization trend of A > C > G > T, similar to the reported trend of ssDNA. For variants containing ≥50% adenine as terminal bases, introducing cytosine or guanine as preceding bases could also result in strong stabilization. As the proportion of adenine decreases, variants with guanine or thymine provide less protection against SIA, especially for guanine-rich hairpins (≥6G) that could form G-quadruplexes. Such findings could serve as guidelines for researchers to design suitable DNA hairpins for label-free AuNP-based biosensors.
  7. Yusof NS, Khan MN
    Langmuir, 2010 Jul 6;26(13):10627-35.
    PMID: 20524703 DOI: 10.1021/la100863q
    Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K(X)(Br), for the probable presence of wormlike/viscoelastic micellar solutions under the conditions of the present study.
  8. Ajith A, Gowthaman NSK, John SA, Elango KP
    Langmuir, 2023 Jul 25;39(29):9990-10000.
    PMID: 37436168 DOI: 10.1021/acs.langmuir.3c00768
    Different modes of attachment of graphene oxide (GO) on an electrode surface resulted in unusual catalytic behavior respective of attachment because of film thickness. The present work investigates the direct adsorption of GO to the surface of a glassy carbon (GC) electrode. Scanning electron microscopy images revealed that multilayers of GO get adsorbed on the GC substrate and the adsorption was limited by folding up of the GO sheets at their edges. π-π and hydrogen bonding interactions between the GO and GC substrate flagged the adsorption of GO. pH studies revealed that higher adsorption of GO was achieved at pH = 3 rather than at pH = 7 and 10. Even though the electroactive surface area of adsorbed GO (GOads) was not remarkable (0.069 cm2), upon electrochemical reduction of GOads (Er-GOads), the electroactive surface area was escalated to be 0.174 cm2. Similarly, the RCT of Er-GOads was boosted to 2.9 kΩ compared to GOads which is 19 kΩ. Open circuit voltage was recorded to study the adsorption of GO on the GC electrode. Multilayered GO best fitted with the Freundlich adsorption isotherm, and the Freundlich constants like n and KF were found to be 4 and 0.992, respectively. The Freundlich constant "n" revealed the adsorption of GO on the GC substrate to be a physisorption process. Furthermore, the electrocatalytic performance of Er-GOads was demonstrated by taking uric acid as a probe. The modified electrode showed excellent stability toward the determination of uric acid.
  9. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
  10. Harilal M, G Krishnan S, Pal B, Reddy MV, Ab Rahim MH, Yusoff MM, et al.
    Langmuir, 2018 02 06;34(5):1873-1882.
    PMID: 29345940 DOI: 10.1021/acs.langmuir.7b03576
    This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.
  11. Zahid NI, Ji L, Khyasudeen MF, Friedrich A, Hashim R, Marder TB, et al.
    Langmuir, 2019 07 23;35(29):9584-9592.
    PMID: 31287700 DOI: 10.1021/acs.langmuir.9b01767
    New designer biofluorophores are being increasingly used in the investigation of complex cellular processes. In this study, we utilized new derivatives of pyrene (Py), i.e., 2-n-alkyl-pyrenes (Py-C4 and Py-C8), in order to probe different regions inside the hydrophobic tail of n-dodecyl β-d-maltoside (βMal-C12) in two different phases (cubic ↔ lamellar). Although the sensitivity to the local environment is reduced compared to that of Py, attaching C4 and C8 at the 2-position of Py can provide a possible means to probe the local hydrophobicity in different parts of the tail region. The absence of excimer fluorescence and the ratio of the vibronic fluorescence peak intensities (I1/I3) in a lipid environment indicate the existence of Py as monomers in the hydrophobic region, similar to hydrophobic solvation, yet close to the headgroup region. When Py is replaced by Py-C4 and Py-C8, there is a small increase in hydrophobicity (reduction in I1/I3) as the Py moiety is pulled deeper inside the tail region of both cubic and lamellar phases. The larger space of the tail region in the lamellar phase is reflected as more local hydrophobicity measured by the probes which can penetrate deep inside, whereas the curved structure of the cubic phase limits the available space for the probes. Three fluorescence lifetime components were measured in lipid, indicating the heterogeneous nature of the hydrophobic region. In the lamellar phase, a large reduction in the average lifetime value, led by the long decay component, was measured for Py-C4 (reduction by 25%) and Py-C8 (45%) compared to that of the parent Py. This observation suggests the presence of a mechanism of interaction more collisional than static between the Py moiety and the tail region of the bilayer unit due to the ample space provided by the lamellar phase as the probe is buried deeper inside the hydrophobic region. A much smaller effect was observed in the cubic phase and was correlated with the tight environment around the probes, which stems from the increased curvature of the cubic phase. The current results provide a deeper understanding of the hydrophobic region during phase transition of lipid self-assembly which is important for better control during the process of membrane-protein crystallization.
  12. Ng WM, Chong WH, Abdullah AZ, Lim J
    Langmuir, 2023 Dec 05;39(48):17270-17285.
    PMID: 37976676 DOI: 10.1021/acs.langmuir.3c02358
    This study provides a systematic analysis of the transport and magnetophoretic behavior of nanoscale zerovalent iron (nZVI) particles, both bare and surface functionalized by poly(ethylene glycol) (PEG) and carboxymethyl cellulose (CMC), after undergoing a chemical reaction. Here, a simple and well-investigated chemical reaction of methyl orange (MO) degradation by nZVI was used as a model reaction system, and the sand column transport and low-gradient magnetophoretic profiles of the nanoparticles were measured before and after the reaction. The results were compared over time and analyzed in the context of extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to understand the particle interactions involved. The colloidal stability of both bare and functionalized nZVI particles was enhanced after the reaction due to the consumption of metallic Fe content, resulting in a significant drop in their magnetic properties. As a result, they exhibited improved mobility across the sand column and a slower magnetophoretic collection rate compared to the unreacted particles. Here, the colloidal filtration theory (CFT) was employed to analyze the transport behavior of nZVI particles across the packed sand column. It has been observed that the surface properties of the reacted functionalized particles changed, possibly due to the entrapment of degraded products within the polymer adlayer. Moreover, quartz crystal microbalance with dissipation (QCM-D) measurements were performed to reveal the viscoelastic contribution of the adlayer formed by both bare and functionalized nZVI particles after the reaction on influencing their transport behavior across the sand column. Finally, we proposed the implementation of a high-gradient magnetic trap (HGMT) to reduce the transport distance of the colloidally stable CMC-nZVI, both before and after the reaction. This study sheds light on the behavioral changes of iron nanoparticles after the reaction and highlights environmental concerns regarding the presence of reacted nanoparticles.
  13. Zahid NI, Abou-Zied OK, Hashim R, Heidelberg T
    Langmuir, 2012 Mar 20;28(11):4989-95.
    PMID: 22364590 DOI: 10.1021/la3001976
    Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.
  14. Saleem MA, Yasir Siddique M, Nazar MF, Khan SU, Ahmad A, Khan R, et al.
    Langmuir, 2020 07 14;36(27):7908-7915.
    PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016
    Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
  15. Nazar MF, Yasir Siddique M, Saleem MA, Zafar M, Nawaz F, Ashfaq M, et al.
    Langmuir, 2018 Sep 11;34(36):10603-10612.
    PMID: 30109940 DOI: 10.1021/acs.langmuir.8b01775
    To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated μEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated μEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum μE of formulation A and formulation B, respectively. Each loaded μE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each μE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.
  16. Febriyanti E, Suendo V, Mukti RR, Prasetyo A, Arifin AF, Akbar MA, et al.
    Langmuir, 2016 06 14;32(23):5802-11.
    PMID: 27120557 DOI: 10.1021/acs.langmuir.6b00675
    The unique three-dimensional pore structure of KCC-1 has attracted significant attention and has proven to be different compared to other conventional mesoporous silica such as the MCM-41 family, SBA-15, or even MSN nanoparticles. In this research, we carefully examine the morphology of KCC-1 to define more appropriate nomenclature. We also propose a formation mechanism of KCC-1 based on our experimental evidence. Herein, the KCC-1 morphology was interpreted mainly on the basis of compiling all observation and information taken from SEM and TEM images. Further analysis on TEM images was carried out. The gray value intensity profile was derived from TEM images in order to determine the specific pattern of this unique morphology that is found to be clearly different from that of other types of porous spherical-like morphologies. On the basis of these results, the KCC-1 morphology would be more appropriately reclassified as bicontinuous concentric lamellar morphology. Some physical characteristics such as the origin of emulsion, electrical conductivity, and the local structure of water molecules in the KCC-1 emulsion were disclosed to reveal the formation mechanism of KCC-1. The origin of the KCC-1 emulsion was characterized by the observation of the Tyndall effect, conductometry to determine the critical micelle concentration, and Raman spectroscopy. In addition, the morphological evolution study during KCC-1 synthesis completes the portrait of the formation of mesoporous silica KCC-1.
  17. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, et al.
    Langmuir, 2018 10 30;34(43):12730-12738.
    PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321
    The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
  18. Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R
    Langmuir, 2013 Dec 23;29(51):15794-804.
    PMID: 24274824 DOI: 10.1021/la4040134
    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
  19. Law JKC, Ng WM, Chong WH, Li Q, Zhang L, Khoerunnisa F, et al.
    Langmuir, 2023 Apr 11;39(14):4904-4916.
    PMID: 36992604 DOI: 10.1021/acs.langmuir.2c03164
    The possible magnetophoretic migration of iron oxide nanoparticles through the cellulosic matrix within a single layer of paper is challenging with its underlying mechanism remained unclear. Even with the recent advancements of theoretical understanding on magnetophoresis, mainly driven by cooperative and hydrodynamics phenomena, the contributions of these two mechanisms on possible penetration of magnetic nanoparticles through cellulosic matrix of paper have yet been proven. Here, by using iron oxide nanoparticles (IONPs), both nanospheres and nanorods, we have investigated the migration kinetics of these nanoparticles through grade 4 Whatman filter paper with a particle retention of 20-25 μm. By performing droplet tracking experiments, the real-time stained area growth of the particle droplet on the filter paper, under the influences of a grade N40 NdFeB magnet, were recorded. Our results show that the spatial and temporal expansion of the IONP stain is biased toward the magnet and such an effect is dependent on (i) particle concentration and (ii) particle shape. The kinetics data were first analyzed by treating it as a radial wicking fluid, and later the IONP distribution within the cellulosic matrix was investigated by optical microscopy. The macroscopic flow front velocities of the stained area ranged from 259 μm/s to 16 040 μm/s. Moreover, the microscopic magnetophoretic velocity of nanorod cluster was also successfully measured as ∼214 μm/s. Findings in this work have indirectly revealed the strong influence of cooperative magnetophoresis and the engineering feasibility of paper-based magnetophoretic technology by taking advantage of magnetoshape anisotropy effect of the particles.
  20. Abu Hatab AS, Ahmad YH, Ibrahim M, Elsafi Ahmed A, Abdul Rahman MB, Al-Qaradawi SY
    Langmuir, 2023 Jan 06.
    PMID: 36607611 DOI: 10.1021/acs.langmuir.2c02873
    Water electrolysis has attracted scientists' attention as a green route for energy generation. However, the sluggish kinetics of oxygen evolution reaction (OER) remarkably increases the reaction overpotential. In this work, we developed Co-based nanomaterials as cost-effective, highly efficient catalysts for OER. In this regard, different Co-based metal-organic frameworks (MOFs) were synthesized using different organic linkers. After annealing under inert atmosphere, the corresponding Co-embedded mesoporous carbon (Co/MC) materials were produced. Among them, Co/MC synthesized using 2-methyl imidazole (Co/NMC-2MeIM) expressed the highest surface area (412 m2/g) compared to its counterparts. Furthermore, it expressed a higher degree of defects as depicted by Raman spectra. Co/NMC-2MeIM exhibited the best catalytic performance toward OER in alkaline medium. It afforded an overpotential of 292 mV at a current density of 10 mA cm-2 and a Tafel slope of 99.2 mV dec-1. The superior electrocatalytic performance of Co/NMC-2MeIM is attributed to its high content of Co3+ on the surface, high surface area, and enhanced electrical conductivity induced by nitrogen doping. Furthermore, its high content of pyridinic-N and high degree of defects remarkably enhance the charge transfer between the adsorbed oxygen species and the active sites. These results may pave the avenue toward further investigation of metal/carbon materials in a wide range of electrocatalytic applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links